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PART – I 

Development of a Two-Step Regiospecifc Synthetic Route for Multigram-Scale Synthesis of 

β-Carboline Analogs for Studies in Primates as Anti-Alcohol Agents 

β-Carboline and their derivatives are important structural motifs in synthetic organic and medicinal 

chemistry because of their novel biological activity, especially in regard to the reduction of alcohol 

self-administration [binge drinking (BD)], a major problem increasing day by day in modern 

society. This anti-alcohol effect is proposed to be due to the activity of ligands at the 

benzodiazepine site of the GABAA receptor in the central nervous system acting as antagonists at 

the α1 subunit. The past evidence by June, Gondre-Lewis, and Weerts et al. of the biological 

importance of β-carbolines for the treatment of alcohol abuse has prompted the design and 

synthesis of a new series of analogs to improve the in vitro and in vivo pharmacological properties. 

Initial SAR studies on these β-carbolines revealed that βCCt (3) and the more water soluble analog, 

3-PBC·HCl (1·HCl) were lead ligands for they had been shown to reduce alcohol self-

administration in alcohol preferring (P) and high alcohol drinking (HAD) rats by June et al. with 

little or no effect on sucrose self-administration and no anhedonia nor depression. With this 

important activity, further studies were designed in higher animal models such as non-human 

primates (Weerts). However, the availability of these ligands for biological studies was the limiting 

step because of the long synthetic route and overall low yields. Consequently, a novel short two-

step palladium catalyzed protocol was developed which consisted of a combined regioselective 

Buchwald-Hartwig amination and an intramolecular Heck-type cyclization to gain regiospecific 

access to 3,6-disubstituted β-carbolines. This regiospecific two-step synthetic protocol reduced the 

number of steps from 6 to 2 and permitted execution in excellent yields on a large scale (50 - 80 

grams). To obtain ligands with anti-alcohol effects that were more water soluble than the active 

anti-alcohol compound βCCt (3) by using 3-PBC·HCl (1·HCl) as the guide, 3-ISOPBC·HCl 
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(2·HCl) was synthesized which showed more potent activity in the reduction of alcohol self-

administration than 1·HCl in a maternally deprived (MD) rat model for binge drinking. Later pre-

clinical studies were conducted in non-human primate models such as baboons which required 80-

100 grams of 3-ISOPBC·HCl. This can now be accomplished with ease using the new Pd 

chemistry. The pronounced activity of 2·HCl in non-human primates does imply it is a potential 

ligand to treat human alcoholics without the side effects of diazepam (one of the drugs employed 

now). These results led to the synthesis of 3-cycloPBC·HCl (20·HCl) which was active, to date, 

in MD rats without effecting the sucrose responding. The 3-cycloPBC·HCl was not cytotoxic at 

all when compared to βCCt, 3-PBC·HCl, 3-ISOPBC·HCl; the latter 3 ligands of which did exhibit 

some toxicity but only at very high concentrations. The microsomal stability studies on human and 

mouse liver microsomes of 20·HCl revealed it was longer lived in vitro than 3-PBC·HCl, and 3-

ISOPBC·HCl. Further studies will need to be carried out in primate models to see if 20·HCl is a 

potential novel therapeutic agent to combat alcohol drinking and substance use disorders. 

PART – II 

Design and Synthesis of Novel Antimicrobials for the Treatment of Drug Resistant 

Bacterial Infections 

The alarming increase in bacterial resistance over the last decade along with a dramatic decrease 

in new treatments for infections has led to problems in the healthcare industry. A world-wide threat 

with HIV co-infected with multi and extensively drug-resistant strains of tuberculosis (TB) and 

methicillin-resistant Staphylococcus aureus (MRSA) has emerged and is responsible for several 

million deaths per year. In this regard, herein, novel acrylic acid ethyl ester derivatives were 

synthesized in simple, efficient routes, and evaluated as potential agents against a panel of gram 

positive, negative, mycobacterial, and clinically significant resistant strains including M. 

tuberculosis (Mtb) for minimum inhibitory concentrations (MIC). In depth structure activity 
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relationship (SAR) studies of acrylic acid ethyl ester derivatives revealed that the ethyl esters 59 

and 63 were found to be very potent (MIC = 0.72 and 0.69 µg/mL) against actively replicating 

Mtb. Importantly, scaffolds 59 and 63 exhibited six and four fold greater inhibition, respectively, 

against nonreplicating persistent (dormant) phenotypes under low oxygen conditions than 

isoniazid; this is essential to decrease the duration of tuberculosis treatment from many months to 

less time.  Further evaluation of these selected analogs 59 and 63 against a panel of single-drug 

resistant Mtb strains indicated a similar level of activity as against wild type Mtb. This encouraging 

safety profile is key with a selective index greater than 10. Gratifyingly, the ethyl ester 59 retained 

excellent inhibition with MIC values of 0.25-4.0 µg/mL against a wide variety of virulent 

antibiotic-resistant clinical isolates (MRSA, MDR MRSA, VISA MRSA, and VRE). This exciting 

activity provided a path to determine the molecular target for this novel class of compounds with 

the copper catalyzed azide-alkyne 1,3-dipolar cycloaddition (CuAAC) Click reaction because of 

the availability of alkyne functionality in 59. By treating Staphylococcus aureus lysates with Alexa 

fluor 647 picolyl azide (AF647), one identified S. aureus proteins that had been covalently 

modified by propargyl ligand 59. SDS-PAGE analysis of the fluorescently labeled proteins showed 

that only two proteins were labeled. Encouraged by the results, AF647 was replaced with biotin 

azide to isolate the target proteins using streptavidin beads. Later, the purified protein fractions 

were subjected to peptide mass fingerprinting for protein identification. Data analysis of these 

samples using MaxQuant 1.4.1.2 against the Uniport database for E. coli and S. aureus identified 

three enzymes as potential targets: enolase (Uniprot ID: P64079), dihydrolipoyllysine-residue 

acetyltransferase (Uniprot ID: Q8NX76), and glyceraldehyde-3-phosphate dehydrogenase 

(Uniprot ID: P0A037). These enzymes are well-known to be involved in glycolysis and act as 

virulence factors responsible for the pathogenicity of S. aureus. Thus far, attempts to validate the 

structure of S. aureus enolase by X-ray diffraction analysis have been unsuccessful, since one has 
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been unable to obtain diffraction-quality crystals of this protein; however, protein docking 

experiments with S. aureus enolase have been successful. Further work on these potent 

antimicrobial agents would benefit from the knowledge of the binding site as well as interactions 

between the ligand and the proteins; the mode of inhibition.  The identification of the bimolecular 

interaction between the ligand 59 and target proteins would potentially result in new drugs to treat 

drug resistant infections from bacteria, including MRSA, MDR VISA, and VRE. The investigation 

of ADMET medicinal chemistry properties of select agents including 59 and 63 is ongoing in our 

laboratories.  

Part – III 

A Novel Synthetic Method for the Synthesis of the Key Quinine Metabolite (3S)-3-

Hydroxyquinine 

The Cinchona alkaloid quinine (1) remains unique among the thousands of natural products 

isolated and characterized to date because it still remains the drug of choice for the treatment of 

severe and complicated malaria in most parts of the world. Apart from biological activity, 

Cinchona alkaloids play a vital role in organic chemistry from racemate resolutions to promote 

enantioselective transformations in both homogeneous and heterogeneous catalysis. The synthesis 

of the major metabolite of quinine (1), 3(S)-3-hydroxyquinine (7) has been accomplished by a 

shorter route, devoid of the previously employed toxic reagent (HBr gas) and separated from its 

epimeric mixture [4(S):1(R)] at C-3 by conversion into the 9-aceto analogue followed by flash 

column chromatography. The molecular structure of the major acetate diastereomer 9 was further 

confirmed by X-ray crystallographic analysis, and this unambiguously confirms the absolute 

configuration of 3(S)-3-hydroxyquinine (7). The new synthetic protocol increased the overall yield 

from 16% to 53% and makes essential metabolite 7 more readily available now for scientists and 

doctors to study drug-drug interactions when using quinine with another agent to treat, malaria 
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combined with HIV (ritonavir) or other comorbid situations. For instance, a doctor in Nigeria, 

using 7 found that in healthy volunteers, to treat patients with HIV and malaria one needed a ratio 

of ~5:1 ritonavir and quinine, not 1:1, as used previously. 
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PART - I  

DEVELOPMENT OF A TWO-STEP REGIOSPECIFIC SYNTHETIC ROUTE FOR 

MULTIGRAM-SCALE SYNTHESIS OF β-CARBOLINE ANALOGS FOR 

STUDIES IN PRIMATES AS ANTI-ALCOHOL AGENTS 
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CHAPTER 1 

SYNTHESIS OF AZA AND CARBOCYCLIC β-CARBOLINES FOR THE 

TREATMENT OF ALCOHOL ABUSE. REGIOSPECIFIC SOLUTION TO THE 

PROBLEM OF 3,6-DISUBSTITUTED β- AND AZA-β-CARBOLINE 

SPECIFICITY 

1.1. ABSTRACT 

 A novel two step protocol was developed to gain regiospecific access to 3-substituted β- and 

aza-β-carbolines, 3-PBC (1), 3-ISOPBC (2), βCCt (3), 6-Aza-3-PBC (4) and 6-Aza-3-ISOPBC (5).      

These β-carbolines (1-3) are potential clinical agents to reduce alcohol self-administration, 

especially 3-ISOPBC·HCl (2·HCl) which appears to be a potent anti-alcohol agent active against 

binge drinking in a rat model of maternally deprived (MD) rats. The method consists of two       

consecutive palladium-catalyzed reactions: a Buchwald-Hartwig amination followed by an 

intramolecular Heck-type cyclization in high yield.                  

1.2. INTRODUCTION 

 β-Carbolines, aza-β-carbolines and their derivatives are important targets in synthetic 

chemistry.1 In addition, they are found in a large number of natural products, many of which 

demonstrate novel biological activity, especially in regard to the reduction of alcohol self-

administration [binge drinking (BD)]. This is proposed to be due to the activity at the benzodiazepine 

site of the GABAA receptor.2 Surprisingly, BD kills six people a day, most of which are men, and 

approximately 88,000 people die from alcohol related issues annually making it the third leading 

preventable cause of death in the United States.3 In 2006, this alcohol misuse cost the US government 

approximately $223.5 billion dollars.3 BD (Blood-alcohol level ≥ 0.08 g% in a 2 hour period) is one 



www.manaraa.com

 

3 

 

form of excessive drinking and because of it, alcohol addiction and dependence remain a significant 

public health concern.4 Maternal separation and early life events can cause profound neurochemical 

and behavioral alterations in childhood that persist into adulthood, enhance the risk to develop 

alcohol use disorders and excessive drinking.5-7 Consequently, the development of clinically safe 

and cost effective therapeutic agents to reduce alcohol addiction and dependence remain essential 

for the future treatment of alcoholism.8,9   

One influence on alcohol abuse is known to be mediated by GABAA receptors, the major 

inhibitory chloride ion gated channels with γ-aminobutyric acid (GABA) as the endogenous ligand 

in the central nervous system. It plays a vital role in several neuronal disorders including anxiety, 

epilepsy, insomnia, depression, bipolar disorder, schizophrenia, as well as mild cognitive 

impairments and Alzheimer’s disease.10-15 The pentameric structure of the GABAA receptor is 

made up of 2 α, 2 β and 1 γ subunits, with a higher distribution of the α1-subunit in the mesolimbic 

system of the ventral pallidum (VP) possibly playing an important role in regulating alcohol 

abuse.16-20 However, the precise neuromechanisms of regulating alcohol-seeking behavior remain 

unknown. In addition to the ventral pallidum, there is now compelling evidence that the GABAA 

receptors within the striatopallidal and extended amygdala system are involved in the ‘acute’ 

reinforcing actions of alcohol.21-23  

 

Figure 1-1. Structures of 3-PBC (1), 3-ISOPBC (2), βCCt (3), 6-Aza-3-PBC (4) and 6-Aza-3-ISOPBC (5) 

To evaluate the role of the α1 receptor in regulating alcohol reinforcement, the orally active 

β-carbolines 3-propoxy-β-carboline hydrochloride 1·HCl (3-PBC·HCl) and β-carboline-3-
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carboxylate-tert-butyl ester 3 (βCCt, α1 antagonist), the mixed benzodiazepine (BDZ) agonist-

antagonists with binding selectivity at the α1 Bz/GABAA receptor were developed (see Figure 1-

1).18,24,25Behavioral studies in several species (e.g., rats, mice, primates) show that these ligands 

were BDZ antagonists, at the α1 Bz/GABAA subtype exhibiting competitive binding-site 

interactions with BDZ agonists over a broad range of doses.18,24,26 In studies which involved the 

α1 subtype, they were shown to selectively reduce alcohol-motivated behaviors and more 

importantly, 3-PBC·HCl significantly reduced alcohol self-administration and reduced craving in 

baboons.26 β-Carbolines 1·HCl and 3 displayed mixed weak agonist-antagonist profiles in vivo in 

alcohol preferring (P) and high alcohol drinking (HAD) rats.18,26-28 Therefore, in addition to their 

use to study the molecular basis of alcohol reinforcement, α1 Bz β-carboline ligands which display 

mixed pharmacological antagonist-agonist activity in alcohol P and HAD rats may be capable of 

reducing alcohol intake while eliminating or greatly reducing the anxiety associated with habitual 

alcohol, abstinence or detoxification.18,28-30 Consequently, these types of ligands may be ideal 

clinical agents for the treatment of alcohol dependent individuals. 

1.3. RESULTS AND DISCUSSION 

 Previously, the β-carbolines 1 and the potent α1 antagonist 3 have been synthesized from 

DL-tryptophan. The overall yield of 1 (via 6 steps) as reported previously was 8%, while the 

combined yield of 3 (5 steps) was 35%. A few key steps occurred in low yields, which was 

something we sought to improve on31-34 in a continued effort to find more potent subtype selective 

ligands for GABAA receptors. This interest resulted in a short and concise synthesis of 1 and 3. In 

2011, a palladium catalyzed two-step protocol for the synthesis of 1, and 3, as well as analogs of 

1 was reported.35 In the search for a  more potent subtype selective ligand for the GABAA receptor, 

with the knowledge that many 3-substituted β-carbolines and more water soluble aza-β-carbolines 
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might exhibit greater subtype selectivity at α1β2/3γ2 BZR/GABAergic receptors,31-33,36-38 the 

ligands 3-ISOPBC (2), 6-Aza-3-PBC (4), and 6-Aza-3-ISOPBC (5) were designed (see Figure 1-

1) and synthesized using a two-step protocol (Scheme 1-1). 

  

 
Figure 1-2. ORTEP view of the crystal structure of substituted carbolines 3, 9a, and 9d (Displacement 

ellipsoids are at the 50% level (β-carboline numbering not followed) 

 As shown in Scheme 1-1, bromopyridines 6a-c39,40 were reacted with anilines 4a-b in 

toluene at 100-140 °C in the presence of 5 mol% Pd(OAc)2 and 7.5 mol% X-Phos to obtain the 

corresponding diarlyamines 7a-e in moderate to good yields. Unfortunately, the intramolecular 

Heck cyclization [Pd(OAc)2, (t-Bu)3·HBF4, K2CO3, DMA, 120 °C] of 7a-e afforded both the β- 

carbolines 1-5 (individually) and their regioisomeric δ-carbolines 9a-e, respectively. Carbolines 2, 

3, 9a, and 9d were subjected to X-ray crystallographic analysis (see Figure 1-2, Scheme 1-4, and 
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the ESI) to confirm the regiochemistry. Although this protocol permitted synthesis of β-carbolines 

on gram scale for in vivo studies, occasionally the first step in the Buchwald-Hartwig coupling 

failed to give complete conversion into the carboline. This complicated purification for the 

diarylamine was difficult to purify via column chromatography because the diarylamine and one 

of the starting anilines had almost identical Rf values. Furthermore, in the case of the water soluble 

aza-β-carboline the yields (51%) were very poor and importantly, since the second step was not 

regiospecific, this required careful purification to remove the unwanted δ-carboline present in 30 

to 62.5% yield (Scheme 1-1). Interestingly, the in vivo results (unpublished) for 3-isopropoxy-β-

carboline hydrochloride 2·HCl (3-ISOPBC·HCl) carried out in maternally deprived rats for binge 

drinking decreased dramatically this self-administration compared to 1·HCl without affecting the 

overall activity of the rats (i.e. no sedation). This important finding led to the interest in a 

regiospecific synthesis of 3-ISOPBC (2) on large scale. 

The revised synthetic strategy for the regiospecific synthesis of 2 began with the protection 

of the intermediate amine 7b (Na – H) with bulkier groups such as tert-butyloxycarbonyl (Boc) 10 

or a fluorenylmethylenoxy group (Fmoc) 11, which might block the formation of the PdII π-

complex that is required to obtain the undesired regioisomeric δ-carboline. The Boc protected 

amine 10 was easily accessible by treating the amine 7b with di-tert-butyl dicarbonate (Boc)2O 

and 4-(dimethylamino)pyridine (DMAP) in good yield (85%). The Fmoc protected amine 11 was 

synthesized under solvent free conditions by reaction of the amine 7b and Fmoc-Cl by microwave 

irradiation at 80 °C in moderate yield (65%, Scheme 1-2).41 Once protected, diarylamines 10 and 

11 were subjected to a palladium catalyzed Heck-type cyclization using similar conditions to those 

from above. Unfortunately, both reactions afforded the deprotected regioisomers 3-ISOPBC (2) 

and δ-isomer 9b in approximately the same 2:1 ratio, as compared to cyclization with the 

previously unprotected diarylamine 7b (see Scheme 1-1 above). It was felt that deprotection of the 
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carbamate occurred once the indole ring had formed (Scheme 1-2) which provided the better indole 

leaving group. To test the thermal stability of the carbamate starting materials, diarylamines 10 

and 11 were heated at 120 °C in DMA; they were stable to these conditions. In addition, the 

cyclization with PdCl2(PPh3)2 as a palladium source was also attempted using standard Heck-type 

reaction conditions with a milder base (NaOAc), but this failed to give the cyclized product. One 

also explored the reaction by varying the water content using NaOAc·3H2O as a base; however, 

there was no cyclization (Scheme 1-2). 

 The second approach rested on the important switch of the chlorine atom from the benzene 

ring to the pyridine ring in amine 7b. Retrosynthetically, it was envisioned that the core structure 

of 3,6-disubstituted β-carboline A could be obtained from diarylamine B via an intramolecular 

Heck cyclization and it was anticipated that diarylamine B could arise from a substituted aniline 

C and a substituted pyridine derivative D via a Buchwald-Hartwig amination (Scheme 1-3).   
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Scheme 1-3. Retrosynthetic Analysis of 3,6-Disubstituted-β-carbolines 

 At this point it was decided to explore the regioselective palladium catalyzed Buchwald-

Hartwig coupling between aniline and pyridine 1442 for the synthesis of diarylamine 16 (Table 1-

1).  With the previous history in mind,35 the initial attempt was made with 5 mol% Pd(OAc)2, 7.5 

mol% X-Phos and Cs2CO3 (1.5 equiv) in toluene at 110 °C which gave only 18% of the diarylamine 

16 with a large excess of unreacted starting material even after heating for 24 hours (Table 1-1, 

entry 1). However, the catalyst based on the combination of Pd2(dba)3, Xantphos and Pd(OAc)2, 

Xantphos with Cs2CO3 in toluene and dioxane gave the desire product diarylamine 16 in up to 

62% yield (Table 1-1, entries 2-3). The ligand Xantphos has been shown to be efficient in cross 

coupling reactions of C-N bond formation because of a wider bite angle,43 which facilitates the 

reductive elimination. In addition, the excess base may also play a role in the improvement of the 

yield.43 In recent years rapid synthesis with microwave technology has attracted a considerable 

amount of attention for C-N bond formation.44-46 All three previous cyclizations were attempted 

with microwave irradiation (for 1 hour) in order to decrease the duration of the reaction time, as 

well as increase the selectivity under similar reaction conditions. However, the results were the 

same except that in the Xantphos-based ligand systems the cyclizations were completed in 1 hour. 

During continuation of the study of this selective amination, recent reports from Buchwald and co-

workers47 demonstrated air- and moisture-stable palladacyclic precatalysts, when employed with 

aryl iodides and heteroaryliodides were attractive substrates in Pd-catalyzed C-N cross-coupling 

reactions. This process works by preventing formation of the stable bridging iodide dimers and 
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also using a solvent system in which iodide salts were insoluble. These complexes easily undergo 

deprotonation and reductive elimination to generate LPd(0) along with relatively inert indoline 

(for generation of 1) or carbazole (for generation of 2 and 3). These conditions also permit the 

successful coupling of aryl iodides with amines at ambient temperature.47-50 

 

 

The first attempt in this modification was to use the Buchwald 3rd generation palladacycle 

precatalyst (BrettPhos Pd G3) with the BrettPhos ligand in the presence of Cs2CO3 or NaOt-Bu in 

toluene at room temperature. This failed to give the desired product and there was no consumption 

of starting material. Following this attempt, the temperature was raised to reflux, with the addition 

of 3 equivalents of Cs2CO3 and the reaction went to completion within 5 hours. However, it only 

gave the desired amine 16 in 66% yield (Table 1-1, entry 5). When the same experiment was 

performed using only 1.5 equiv of Cs2CO3 the process took a longer time to go to completion with 

entry Pd source ligand base (equiv) solvent temp (time) Yield(%)b 

1 Pd(OAc)2 X-Phos Cs2CO3 ( 1.5 ) toluene 110 °C ( 24 h) 18c 

2 Pd2(dba)3 Xantphos Cs2CO3 ( 2 ) dioxane 110 °C ( 6 h) 51 

3 Pd(OAc)2 Xantphos Cs2CO3 ( 4 ) toluene 110 °C ( 6 h) 62 

4 BrettPhos Pd G3 BrettPhos Cs2CO3 ( 1.5 ) toluene 110 °C ( 14 h) 45 

5 BrettPhos Pd G3 BrettPhos Cs2CO3 ( 3) toluene 110 °C ( 5 h) 66 

6 BrettPhos Pd G3 BrettPhos NaOt-Bu (1.5) toluene 110 °C ( 5 h) 52 

7 BrettPhos Pd G3 BrettPhos Cs2CO3 ( 5 ) toluene 110 °C ( 5 h) 0e 

8 Pd2(dba)3 Xantphos Cs2CO3 ( 5 ) toluene 110 °C ( 3 h) 74 

    9 Pd(OAc)2 rac-BINAP Cs2CO3 ( 5 ) toluene 110 °C ( 5 h) 80 

    10 Pd(OAc)2 rac-BINAP K2CO3 ( 5 ) toluene 110 °C ( 24 h) 22 

    11 Pd(OAc)2 rac-BINAP Cs2CO3 ( 5 ) toluene 110 °C ( 5 h) 92d 

a 14 (0.1 mmol), aniline (0.12 mmol), Pd (3 mol%), ligand (3 mol%), base, and solvent (1 mL) 
b Isolated yields 
c Pd (5 mol%), ligand (7.5 mol%) 
d aniline (0.1 mmol) 
e 90% of diaminated product [6-isopropoxy-N3, N4-diphenylpyridine-3,4-diamine] was observed 
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an isolated yield of 45% of the desired amine 16. This was accompanied by the diaminated product 

[6-isopropoxy-N3, N4-diphenylpyridine-3,4-diamine] in ~18% yield (Table 1-1, entry 4). 

Unfortunately, when the stronger base NaOt-Bu was employed comparable results to the above 

reaction (Table 1-1, entry 4) were obtained accompanied by more decomposed material [TLC 

(silica gel; Table 1-1, entry 6)]. The use of excess base (Cs2CO3) gave only the unwanted 

diaminated product in 90% yield (Table 1-1, entry 7). It was found the Pd(OAc)2, rac-BINAP and 

K2CO3 combination, unfortunately, did not lead to full conversion even after heating for 24 hours  

(Table 1-1, entry 10). Interestingly, the catalyst system Pd2(dba)3 and Xantphos with a large excess 

of base [Cs2CO3 (5 equiv)] gave a 74% yield of 16, whereas the catalyst system Pd(OAc)2, rac-

BINAP under similar reaction conditions yielded 80% (Table 1-1, entry 8 and 9) of the desired 

amine 16. Remarkably, these data indicated a large excess of mild base was essential to obtain 

good yields, as well as selectivity. Furthermore, a rate-limiting interphase deprotonation of the 

Pd(II)-amine complex intermediate has occured in the catalytic cycle.51-53 Encouraged by these 

promising results, efforts turned toward lowering the aniline loading from 1.2 equivalents to 1 

equivalent for regioselectivity. In doing so one achieved selective amination of pyridine 14 with 

aniline. Interestingly, neither a 4- nor 4,5-diaminated pyridine product was obtained. Using this 

catalyst-base combination in refluxing toluene, the desired cross-coupling proceeded smoothly to 

provide the desired anilinopyridine 16 in excellent yield (92%, Table 1-1, entry 11). Interestingly, 

the same reaction conditions gave good yields in the case of the more polar starting 4-amino 

pyridine (Scheme 1-4); however, the temperature was necessarily increased to 140 °C to increase 

the solubility of the starting material, 4-amino pyridine. In contrast, when a more polar solvent 

such as DMA was employed, the result was either inferior yields and/or deiodination of pyridine 

16, as mentioned above. 
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 Once the diarylamines 15-18 were in hand in good to excellent yields, the previously 

applied Heck-type conditions [Pd(OAc)2, (t-Bu)3·HBF4, K2CO3, DMA, 120 °C] were employed 

for cyclization. Gratifyingly, this catalyst system gave excellent yields of 91-92% and 90-92% for 

β-carbolines 1-2 and aza-β-carbolines 4-5, respectively (Scheme 1-4). The switch of the position 

of the chlorine atom from the benzene ring to the pyridine ring worked regiospecifically and 

completely eliminated the corresponding unwanted δ regioisomer. This completely eliminated the 

difficult chromatography required to separate β and δ carbolines. The 3-ISOPBC 2 has now been 

prepared on 15-25 gram scale for studies in vivo (Scheme 1-5) and it is very easy to scale up to 50-

100 gram level. Finally, the overall yield increased from 43% to 84% compared to the previous 

syntheses.33,35
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1.4. CONCLUSION 

 In conclusion, a novel two-step regiospecific route to the four anti-alcohol agents of 

biological interest, 3-PBC (1), 3-ISOPBC (2), 6-Aza-3-PBC (4) and 6-Aza-3-ISOPBC (5), has 

been developed. The process provides improved yields when compared to the earlier reported 

syntheses.33,35 This two-step protocol consists of the combination of a regioselective Buchwald-

Hartwig amination and an intramolecular Heck-type cyclization. The first step, regioselective 

arylamination, was achieved by using a Pd-BINAP catalytic system in combination with a large 

excess of Cs2CO3, while the latter intramolecular Heck-type cyclization went smoothly with 

Pd(OAc)2 in combination with the air-stable monodentate ligand (t-Bu)3·HBF4 and K2CO3. These 

conditions permit the presence of base sensitive functional groups in the substrates.  Regiospecific 

synthesis of β- and aza-β-carbolines was achieved by simply changing the chlorine position from 

the benzene ring to the pyridine derivatives. Importantly, these reactions are capable of scale-up 

to multigram quantities and were performed on 25 gram scale for in vivo biology. We observed 

similar results except in the case of the Buchwald-Hartwig amination step, where it required an 

increase of the catalyst loading from 3 to 6 mol% whenever the starting material was not 

consumed. This new process reported here provides the material necessary to study alcohol self-

administration and reduction thereof in MD rats and in primates. This regiospecific two-step 

synthetic protocol increased the overall yield from 43 % to 84 % in the case of β-carbolines 1-2 

and from 16 % to 66 % for Aza-β-carbolines 4-5 respectively, and negated the need for a difficult 

chromatographic step. 
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1.5. EXPERIMENTAL 

1.5.1. General Considerations 

 All reactions were carried out in oven-dried, round-bottom flasks or in resealable screw-

cap test tubes or heavy-wall pressure vessels under an argon atmosphere. The solvents were 

anhydrous unless otherwise stated. Stainless steel syringes were used to transfer air-sensitive 

liquids. Organic solvents were purified when necessary by standard methods or purchased from 

commercial suppliers. Anhydrous solvents of toluene, dioxane and N,N-dimethylacetamide 

(DMA) were subjected to the  freeze-thaw method to render them oxygen free to execute the 

Buckwald-Hartwig coupling and intramolecular Heck reactions.  All chemicals purchased from 

commercial suppliers were employed as is, unless stated otherwise in regard to purification.  Silica 

gel (230 - 400 mesh) for flash chromatography was utilized to purify the analogues.  The 1H and 

13C NMR data were obtained on the NMR spectrometer (300 MHz / 500 MHz) instrument with 

chemical shifts in δ (ppm) reported relative to TMS. The HRMS were obtained on a LCMS-IT-

TOF mass spectrometer by Dr. Mark Wang. 

1.5.2. General procedure for the Buchwald-Hartwig coupling reaction between substituted 

anilines and substituted pyridines: Representative procedure for the synthesis of N-(2-

chlorophenyl)-6-propoxypyridin-3-amine (7a)                                                                             

 A heavy-wall pressure tube was equipped with a magnetic stir bar and fitted with a rubber 

septum. It was then charged with 5-bromo-2-propoxypyridine 6a (1.3 g, 6 mmol), Pd(OAc)2 (67.4 

mg, 0.3 mmol), X-Phos (214 mg, 0.45 mmol) and Cs2CO3 (2.34 g, 7.2 mmol).  The vessel was 

evacuated and backfilled with argon (this process was repeated a total of 3 times). The 2-

chloroaniline 4a (0.8 g, 6.3 mmol) and freeze-thawed toluene (20 mL) was injected into the tube 

with a degassed syringe under a positive pressure of argon. The rubber septum was replaced with 
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a screw-cap by quickly removing the rubber septum under the flow of argon and the sealed tube 

was introduced into a pre-heated oil bath at 110 °C. The reaction mixture was maintained at this 

temperature for 15 h. At the end of this time period, the pressure tube was allowed to cool to rt. 

The reaction mixture was filtered through a short pad of celite, and the pad was washed with ethyl 

acetate (until no more product could be obtained; ≈ 100 mL; TLC, silica gel). The combined 

organic fractions were washed with water (100 mL), brine (100 mL), dried (Na2SO4) and 

concentrated under reduced pressure. The crude product was purified by flash column 

chromatography (silica gel, 20:1 hexanes/ethyl acetate) to afford 7a (0.64 g, 81 %) as a pale yellow 

oil: 1H NMR (300 MHz, CDCl3) δ 8.04 (d, J = 2.6 Hz, 1H), 7.47 (dd, J = 8.8,  2.8 Hz, 1H), 7.33 

(dd, J = 7.9, 1.4 Hz, 1H), 7.12 – 7.02 (m, 1H), 6.84 (dd, J = 8.2, 1.3 Hz, 1H), 6.74 (dd, J = 11.5, 

5.1 Hz, 2H), 5.88 (br, 1H), 4.24 (t, J = 6.7 Hz, 2H), 1.90 – 1.72 (m, 2H), 1.04 (t, J = 7.4 Hz, 3H); 

13C NMR (75 MHz, CDCl3) δ 161.2, 142.1, 141.9, 135.3, 131.0, 129.7, 127.6, 120.1, 119.5, 113.5, 

111.4, 67.9, 22.4, 10.6; HRMS (ESI-TOF) (m/z): [M+H]+ calcd for C14H16ClN2O: 263.0951, 

found: 263.0958. 

1.5.3. N-(2-Chlorophenyl)-6-isopropoxypyridin-3-amine (7b) 

 Following the general procedure, 5-bromo-2-isopropoxypyridine 6b (0.44 g, 2.0 mmol) 

with 2-chloroaniline 4a (0.268 g, 2.1 mmol), Pd(OAc)2 (22.4 mg, 0.1 mmol), X-Phos (71.4 mg, 

0.15 mmol), and Cs2CO3 (0.78 g, 2.4 mmol) were heated to 110 °C  in toluene. After flash 

chromatography (silica gel, 20:1 hexane/ethyl acetate), the process afforded 7b (0.215 g, 82%) as 

a pale yellow oil: 1H NMR (300 MHz, CDCl3) δ 8.06 (d, J = 2.7 Hz, 1H), 7.47 (dd, J = 8.7, 2.8 

Hz, 1H), 7.34 (dd, J = 7.9, 1.3 Hz, 1H), 7.13 – 7.04 (m, 1H), 6.87 (dd, J = 8.2, 1.2 Hz, 1H), 6.81 

– 6.67 (m, 2H), 5.90 (br, 1H), 5.36 – 5.24 (m, 1H), 1.39 (d, J = 6.2 Hz, 6H); 13C NMR (75 MHz, 

CDCl3) δ 160.6, 142.3, 142.0, 135.3, 130.7, 129.6, 127.6, 120.1, 119.5, 113.5, 111.9, 68.2, 22.1; 

HRMS (ESI-TOF) (m/z): [M+H]+ calcd for C14H16ClN2O: 263.0951, found: 263.0935. 
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1.5.4. tert-Butyl 5-[(2-chlorophenyl)amino]picolinate (7c) 

 Following the general procedure, tert-butyl 5-bromopicolinate 6c (5 g, 19.4 mmol) with 2-

chloroaniline 4a (2.6 g, 20.3 mmol), Pd(OAc)2 (0.22 g, 0.97 mmol), X-Phos (0.69 g, 1.45 mmol), 

and Cs2CO3 (7.59 g, 23.3 mmol) was heated to  110 °C  in toluene. After flash chromatography 

(silica gel, 5:1 hexanes/ethyl acetate), this process afforded 7c (5.02 g, 85%) as an off-white solid; 

mp 148-149 °C : 1H NMR (300 MHz, CDCl3) δ 8.54 (d, J = 2.7 Hz, 1H), 8.00 (d, J = 8.6 Hz, 1H), 

7.45 (dd, J = 8.1, 1.7 Hz, 2H), 7.39 (dd, J = 8.1, 1.2 Hz, 1H), 7.27 – 7.20 (m, 1H), 7.02 (td, J = 

7.9, 1.4 Hz, 1H), 6.45 (br, 1H), 1.65 (s, 9H); 13C NMR (75 MHz, CDCl3) δ 163.8, 141.5, 141.3, 

139.3, 137.3, 130.3, 127.7, 125.9, 124.6, 123.7, 122.6, 118.8, 81.9, 28.2; HRMS (ESI-TOF) (m/z): 

[M+Na]+ calcd for C16H17ClN2O2Na: 327.0876, found: 327.0857. 

1.5.5. N-(3-Chloropyridin-4-yl)-6-propoxypyridin-3-amine (7d) 

 Following the general procedure for 24 h at 140 °C, 5-bromo-2-propoxypyridine 6a (13.45 

g, 62.50 mmol) was heated with 4-amino-3-chloropyridine 4b (8.0 g, 62.5 mmol), Pd(OAc)2 (697 

mg, 3.1 mmol), X-Phos (1.46 g, 3.1 mmol) and Cs2CO3 (40.6 g,  125 mmol) in refluxing toluene 

to yield the crude diaza material 7d. After flash chromatography (silica gel, 1:1 ethyl 

acetate/hexane), this afforded the pure diaza material 7d (8.29 g, 51%) as a white solid; mp 71.6 

− 72.6 °C :  1H NMR (300 MHz, CDCl3): δ 8.35 (s, 1H), 8.10-8.07 (m, 2H), 7.48 (dd, J = 6.0, 3.0 

Hz, 1H), 6.80 (d, J = 6.0 Hz, 1H), 6.60 (d, J = 6.0 Hz, 1H), δ 6.45 (br, 1H), 4.25 (t, J = 6.9, Hz, 

2H), 1.87-1.75 (m, 2H), 1.03 (t, J = 7.2, Hz, 3H); 13C NMR (75 MHz, CDCl3): δ 162.3, 148.8, 

148.3, 148.2, 144.0, 136.56, 128.2, 117.1, 111.7, 106.9,  68.0, 22.3, 10.5; HRMS (ESI-TOF) (m/z): 

[M+H]+ calcd for C13H15ClN3O 264.0904, found 264.0893. 

1.5.6. N-(3-Chloropyridin-4-yl)-6-isopropoxypyridin-3-amine (7e) 

 Following the general procedure for 24 h at 140 °C, 5-bromo-2-isopropoxypyridine 6b 

(8.09 g, 37.20 mmol) was heated with 4-amino-3-chloropyridine 4b (4.74 g, 37.20 mmol), 
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Pd(OAc)2  (419 mg, 1.87 mmol), X-Phos (608 mg, 1.87 mmol), Cs2CO3 (15.25 g, 46.80 mmol) in 

refluxing toluene to afford a crude solid which was purified by  flash chromatography (silica gel, 

1:1 ethyl acetate/hexane) to furnish a white solid 7e  (5.20 g, 52.4 %); mp 76 − 78 °C:  1H NMR 

(300 MHz, CDCl3): δ 8.35 (s, 1H), 8.10-8.06 (m, 2H), 7.46 (dd, J = 6.0, 3.0 Hz, 1H), 6.74 (d, J = 

6.0 Hz, 1H), 6.61 (d, J = 6.0 Hz, 1H),  6.42 (br s, 1H), 5.35-5.23 (m, 1H), 1.36 (d, J = 6.0 Hz, 6H); 

13C NMR (75 MHz, CDCl3): δ 161.7, 148.7, 148.3, 144.0, 136.5, 127.9, 117.0, 112.2, 106.9, 68.5, 

22.0; HRMS (ESI-TOF) (m/z): [M+H]+ calcd for C13H15ClN3O 264.0904, found 264.0909. 

1.5.7. General procedure for the intramolecular Heck cyclization: Representative 

procedure for the synthesis of 3-propoxy-9H-pyrido[3,4-b]indole (3-PBC, 1) and 2-

propoxy-5H-pyrido[3,2-b]indole (9a). 

 A heavy-wall pressure tube was equipped with a magnetic stir bar and fitted with a rubber 

septum and loaded with N-(2-chlorophenyl)-6-propoxypyridin-3-amine 7a (526 mg, 2.0 mmol), 

Pd(OAc)2 (44.8 mg, 0.2 mmol), (t-Bu)3P∙HBF4 (116 mg, 0.4 mmol) and K2CO3 (552 mg, 4.0 

mmol).  The vessel was evacuated and backfilled with argon (this process was repeated a total of 

3 times) and degassed DMA (8 mL) was injected into the tube with a degassed syringe under a 

positive pressure of argon. The rubber septum was replaced with a screw-cap by quickly removing 

the rubber septum under the flow of argon and the sealed tube was introduced into a pre-heated oil 

bath at 120 °C. The reaction mixture was maintained at this temperature for 16 h. At the end of 

this period, the reaction mixture was allowed to cool to rt. The dark brown mixture which resulted 

was then passed through a short pad of celite. The celite pad was further washed with ethyl acetate 

(150 mL) until no more product (TLC; silica gel) was detected in the eluent.  The combined filtrate 

was washed with water (100 mL x 3), brine (100 mL), dried (Na2SO4) and concentrated under 

reduced pressure. The crude product was purified by flash column chromatography (silica gel, 5:1 

hexanes/ethyl acetate) to afford 3-PBC (1) (235 mg, 52%) as an off white solid. mp 120.5-121.5 
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°C (lit.35 mp 119.3-120.5 °C) : 1, 1H NMR (300 MHz, CDCl3) δ 8.66 (br, 1H), 8.42 (s, 1H), 8.05 

(d, J = 7.9 Hz, 1H), 7.50 (t, J = 7.6 Hz, 1H), 7.45 – 7.38 (m, 1H), 7.35 (s, 1H), 7.21 (t, J = 7.4 Hz, 

1H), 4.28 (t, J = 6.7 Hz, 2H), 1.94 – 1.78 (m, 2H), 1.06 (t, J = 7.4 Hz, 3H);  13C NMR (75 MHz, 

CDCl3) δ 157.9, 142.4, 133.8, 132.7, 128.9, 128.7, 122.0, 121.4, 119.5, 111.5, 99.1, 68.6, 22.7, 

10.6; HRMS (ESI-TOF) (m/z): [M+H]+ calcd for C14H15N2O: 227.1184, found: 227.1174. A 

hydrochloride salt of 1 was prepared by the reported method31 to obtain 3-PBC·HCl (1·HCl): 

yellow solid; mp 194.5-195.5 °C (lit31 194.0-195.0 °C).   The spectral data for this 1·HCl were in 

excellent agreement with the reported values (mp, 1H NMR).31 

9a (145 mg, 32%) as a white solid; mp 125-126 °C: 1H NMR (300 MHz, CDCl3) δ 8.28 (t, J = 8.8 

Hz, 1H), 8.20 (br, 1H), 7.60 (d, J = 8.7 Hz, 1H), 7.51 – 7.34 (m, 2H), 7.27 (t, J = 7.3 Hz, 1H), 6.83 

(d, J = 8.7 Hz, 1H), 4.46 (t, J = 6.7 Hz, 2H), 1.99 – 1.80 (m, 2H), 1.10 (t, J = 7.4 Hz, 3H); 13C 

NMR (75 MHz, CDCl3) δ 159.5, 140.2, 138.2, 128.4, 126.8, 122.3, 121.6, 120.6, 119.7, 111.3, 

108.6, 67.9, 22.6, 10.7; HRMS (ESI-TOF) (m/z): [M+H]+ calcd for C14H15N2O: 227.1184, found: 

227.1180. 

1.5.8. 3-Isopropoxy-9H-pyrido[3,4-b]indole (3-ISOPBC, 2) and 3-isopropoxy-5H-

pyrido[3,2-b]indole (9b) 

 Following the general procedure for the intramolecular Heck cyclization, 7b (526 mg, 2.0 

mmol) was heated with Pd(OAc)2 (45 mg, 0.2 mmol), (t-Bu)3P∙HBF4 (116 mg, 0.4 mmol) and 

K2CO3 (552 mg, 4.0 mmol) in DMA at 120 °C to afford a mixture of regioisomers 2 and 9b.  After 

flash chromatography (silica gel, 5:1 hexanes/ethyl acetate), this procedure yielded pure 3-

ISOPBC (2) and the byproduct 9b.  

2 (239.5 mg, 53%): off-white solid; mp 134-136 °C: 1H NMR (300 MHz, CDCl3) δ 8.41 (s, 1H), 

8.19 (br, 1H), 8.04 (d, J = 7.8 Hz, 1H), 7.50 (t, J = 7.6 Hz, 1H), 7.40 (d, J = 8.1 Hz, 1H), 7.34 (s, 

1H), 7.21 (t, J = 7.4 Hz, 1H), 5.35 – 5.23(m, 1H), 1.40 (d, J = 6.1 Hz, 6H); 13C NMR (75 MHz, 
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CDCl3) δ 157.4, 142.1, 133.7, 132.5, 128.9, 128.8, 122.0, 121.6, 119.5, 111.3, 100.5, 68.6, 22.3; 

HRMS (ESI-TOF) (m/z): [M+H]+ calcd for C14H15N2O: 227.1184, found: 227.1184. A 

hydrochloride salt of 2 was prepared by the reported method37 to obtain 3-ISOPBC·HCl (2·HCl): 

light greenish yellow solid; mp 169-171 °C (lit.37 168-172 °C). The data for this compound 

matched in all respects (1H NMR, mp) with that reported in the literature.37 

9b (163.1 mg, 36%): light brown solid; mp 110.4 - 111.5 °C: 1H NMR (300 MHz, CDCl3) δ 8.27 

(d, J = 7.8 Hz, 1H), 7.99 (br, 1H), 7.67 (d, J = 8.7 Hz, 1H), 7.49 – 7.45 (m, 2H), 7.30 – 7.25 (m, 

1H), 6.79 (d, J = 8.7 Hz, 1H), 5.60 – 5.48 (m, 1H), 1.45 (d, J = 6.1 Hz, 6H); 13C NMR (75 MHz, 

CDCl3) δ 158.9, 140.1, 138.4, 128.1, 126.7, 122.6, 121.3, 120.5, 119.7, 111.1, 109.4, 67.9, 22.2; 

HRMS (ESI-TOF) (m/z): [M+H]+ calcd for C14H15N2O: 227.1184, found: 227.1185. 

1.5.9. tert-Butyl 9H-pyrido[3,4-b]indole-3-carboxylate (βCCt; 3) and tert-butyl 5H-

pyrido[3,2-b]indole-3-carboxylate (9c) 

 Following the general procedure for the intramolecular Heck cyclization, 7c (2 g, 16.4 

mmol), was heated with Pd(OAc)2 (147 mg, 0.656 mmol), (t-Bu)3P∙HBF4 (380 mg, 0.4 mmol) and 

K2CO3 (1.8 g, 13.12 mmol) in DMA at 120 °C to afford crude 3 and 9c. After flash chromatography 

(silica gel, 1:1 hexanes/ethyl acetate), this afforded pure βCCt (3) and 9c.  

3 (885 mg, 50%), white solid; mp 302.5 - 304.5 °C (lit33 301-303 °C): 1H NMR (300 MHz, CDCl3) 

δ 10.35 (br, 1H), 9.23 (s, 1H), 8.86 (s, 1H), 8.25 (d, J = 7.9 Hz, 1H), 7.80 (d, J = 8.3 Hz, 1H), 7.66 

– 7.61 (m, 1H), 7.38 (t, J = 7.5 Hz, 1H), 1.75 (s, 9H); 13C NMR (75 MHz, CD3COCD3) δ 164.9, 

141.2, 139.2, 137.7, 133.4, 128.6, 128.1, 121.8, 121.5, 120.3, 116.9, 112.2, 80.1, 27.6; HRMS 

(ESI-TOF) (m/z): [M+H]+ calcd for C16H17N2O2: 269.1290, found: 269.1286. The spectral data are 

in excellent agreement with the published values.33 

9c (531 mg, 30%), fluffy white solid; mp 216.0 – 218.2 °C: 1H NMR (300 MHz, CDCl3) δ 9.46 

(br, 1H), 8.38 (d, J = 7.8 Hz, 1H), 8.18 (d, J = 8.5 Hz, 1H), 7.82 (d, J = 8.5 Hz, 1H), 7.53 – 7.49 
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(m, 2H), 7.25 – 7.23 (m, 1H), 1.67 (s, 9H); 13C NMR (75 MHz, CDCl3) δ 164.9, 142.4, 141.4, 

141.1, 134.7, 128.6, 122.0, 121.9,  121.0, 120.8, 117.4, 111.5, 81.9, 28.2; HRMS (ESI-TOF) (m/z): 

[M+H]+ calcd for C16H17N2O2: 269.1290, found: 269.1289. 

1.5.10. 8-Propoxy-5H-pyrrolo[2,3-c:4,5-c']dipyridine (6-Aza-3-PBC, 4) and 2-Propoxy-5H- 

pyrrolo[3,2-b:4,5-c']dipyridine (9d) 

 Following the general procedure for the intramolecular Heck cyclization, the diaza 

compound 7d (3.0 g, 11.30 mmol) was heated with Pd(OAc)2 (255.0 mg, 1.13 mmol), (t-

Bu)3P∙HBF4 (657.0 mg, 2.26 mmol) and K2CO3 (3.2 g, 22.60 mmol) in DMA at 120 °C to afford 

crude 4 and 9d.  After flash chromatography (silica gel, 1:24 methanol/dichloromethane) this 

process afforded the pure regioisomers 6-Aza-3-PBC (4) and 9d as white solids.  

4 (820 mg, 31.8%): mp 166-168 °C: 1H NMR (300 MHz, (CD3)2SO): δ 12. 13 (br, 1H), 9.51 (s, 

1H), 8.57 (br, 2H), 7.68 (s, 1H), 7.61 (d, J = 5.7 Hz, 1H), 4.26 (t, J = 6.0, Hz, 2H), 1.83-1.71 (m, 

2H), 1.01 (t, J = 6.0, Hz, 3H); 13C NMR (75 MHz, (CD3)2SO): δ 158.4, 147.0, 144.5, 143.4, 133.0, 

131.5, 130.7, 118.2, 108.1, 100.4, 68.0, 22.5, 10.9; HRMS (ESI-TOF) (m/z): [M+H]+ calcd for 

C13H14N3O: 228.1137, found: 228.1144. 

9d (1.62 g, 62.5%); mp 192-194 °C: 1H NMR (300 MHz, (CD3)2SO):  11.70 (s, 1H), 9.25 (s, 1H), 

8.43 (d, J = 6.0 Hz, 1H), 7.94 (d, J = 9.0 Hz, 1H), 7.51 (d, J = 6.0 Hz, 1H), 6.93 (d, J = 9.0 Hz, 

1H), 4.36 (t, J = 6.0 Hz, 2H), 1.84-1.77 (m, 2H), 1.03 (t, J = 6.0 Hz, 3H); 13C NMR (75 MHz, 

(CD3)2SO): δ 159.7, 145.2, 143.8, 142.8, 136.0, 128.8, 123.5,  118.5, 110.2, 107.6, 67.4, 22.4, 

11.0; HRMS (ESI-TOF) (m/z): [M+H]+ calcd for C13H14N3O: 228.1137, found: 228.1140. 

1.5.11. 8-Isopropoxy-5H-pyrrolo[2,3-c:4,5-c']dipyridine (6-Aza-3-ISOPBC, 5) and 2-

Isopropoxy-5H-pyrrolo[3,2-b:4,5-c']dipyridine (9e)   

 Following the general procedure for the intramolecular Heck cyclization, pyridine 7e (3.0 

g, 11.30 mmol) was heated with Pd(OAc)2 (255.0 mg, 1.13 mmol), (t-Bu)3P∙HBF4 (657.0 mg, 2.26 
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mmol) and K2CO3 (3.2 g, 22.60 mmol) in DMA at 120 °C to afford crude 5 and 9e. After flash 

chromatography (silica gel, 1:24 methanol/dichloromethane) this afforded the regioisomeric 6-

Aza-3-ISOPBC (5) and 9e as white solids. 

5 (800 mg, 31.0%); mp 180.2−183.2 °C: 1H NMR (300 MHz, (CD3)2SO): δ 11.66 (s, 1H), 9.37 (s, 

1H), 8.51 (s, 1H), 8.48 (d, J = 6.0 Hz, 1H), 7.56 (s, 1H), 7.46 (d, J = 6.0 Hz, 1H), 5.32-5.20 (m, 

1H), 1.32 (d, J = 6.0 Hz, 6H); 13C NMR (125 MHz, (CD3)2SO): δ 157.4, 147.3, 146.3, 145.4, 

132.7, 131.6, 130.1,  118.2, 107.4, 100.0, 68.0, 22.6; HRMS (ESI-TOF) (m/z): [M+H]+ calcd for 

C13H14N3O: 228.1137, found: 228.1150. 

9e (1.6 g, 62.3%); mp 207.4-208.6 °C: 1H NMR (500 MHz, (CD3)2SO):  δ 11.85 (s, 1H), 9.28 (s, 

1H), 8.44 (d, J = 3.0 Hz, 1H), 7.94 (d, J = 6.0 Hz, 1H), 7.55 (d, J = 3.0 Hz, 1H), 6.89 (d, J = 6.0 

Hz, 1H), 5.49-5.41 (m, 1H), 1.36 (d, J = 3.0 Hz, 6H); 13C NMR (125 MHz, (CD3)2SO): δ 159.2, 

144.2, 144.0, 142.1, 136.0, 128.9, 123.7,  111.1, 107.8, 67.8, 22.4; HRMS (ESI-TOF) (m/z): 

[M+H]+ calcd for C13H14N3O: 228.1137, found: 228.1140. 

1.5.12. tert-Butyl (2-chlorophenyl)(6-isopropoxypyridin-3-yl)carbamate (10) 

 To the amine 7b (275 mg, 1.05 mmol) in THF (6 mL) was added the di-tert-butyl dicarbonate 

(320 mg, 1.46 mmol) and 4-(dimethylamino)pyridine (DMAP, 51.1 mg, 0.42 mmol) and this 

mixture was stirred at rt for 24 h. The organic solvent was removed under reduced pressure and 

the crude product which resulted was purified by flash column chromatography (silica gel, 1:9 

ethylacetate/hexane) to give the pure BOC protected amine 10 (323 mg, 85%): 

1H NMR (300 MHz, CDCl3) δ 8.03 (d, J = 2.6 Hz, 1H), 7.60 (s, 1H), 7.44 (dd, J = 8.1, 5.9 Hz, 

1H), 7.32 – 7.20 (m, 3H), 6.62 (d, J = 8.9 Hz, 1H), 5.30 – 5.16 (m, 1H), 1.43 (s, 9H), 1.31 (d, J = 

6.2 Hz, 6H); 13C NMR (75 MHz, CDCl3) δ 160.9, 153.3, 143.9, 139.8, 136.7, 133.3, 132.2, 130.4, 

130.3, 128.6, 127.7, 111.1, 81.6, 68.2, 28.1; HRMS (ESI-TOF) (m/z): [M+H]+ calcd for 

C19H24ClN2O3: 363.1475, found: 363.1469. 
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1.5.13. (9H-Fluoren-9-yl)methyl (2-chlorophenyl)(6-isopropoxypyridin-3-yl)carbamate (11) 

 The microwave tube was loaded with amine 7b (300 mg, 1.14 mmol) and Fmoc chloride 

(325 mg, 1.25 mmol). The tube was sealed and placed into a microwave apparatus (with a power 

of 100 W) at 80 °C for 1 h with stirring. At the end of this period, the reaction was directly purified, 

without quenching, by flash column chromatography(silica gel, 1:4 ethylacetate/hexane) to give 

pure Fmoc protected pyridine 11 (360 mg, 65%). 

1H NMR (300 MHz, CDCl3) δ 8.08 (d, J = 2.7 Hz, 1H), 7.70 (d, J = 7.6 Hz, 3H), 7.50 (d, J = 3.8 

Hz, 1H), 7.42 – 7.28 (m, 5H), 7.20 – 7.06 (m, 4H), 6.64 (d, J = 8.5 Hz, 1H), 5.33 – 5.15 (m, 1H), 

4.49 – 4.41 (m, 2H), 4.16 – 4.09 (m, 1H), 1.34 (d, J = 6.1 Hz, 6H); 13C NMR (75 MHz, CDCl3) δ 

154.3, 143.6, 141.3, 139.2, 139.1, 131.6, 130.60, 130.5, 129.2, 127.9, 127.7, 126.9, 125.0, 119.9, 

111.4, 68.4, 68.2, 46.9, 22.1; HRMS (ESI-TOF) (m/z): [M+Na]+ calcd for C29H25ClN2O3Na: 

507.1451, found: 507.1448. 

1.5.14. 4-Chloro-6-isopropoxy-N-phenylpyridin-3-amine (16) 

 A heavy-wall pressure tube was equipped with a magnetic stir bar and fitted with a rubber 

septum that had been charged with 4-chloro-5-iodo-2-isopropoxypyridine 14 (75 mg, 0.252 

mmol), aniline (27.6 µL, 0.256 mmol) and Cs2CO3 (410 mg, 1.26 mmol).  The vessel was 

evacuated and backfilled with argon (this process was repeated a total of 3 times) and degassed 

toluene (1 mL) was injected into the tube with a degassed syringe under a positive pressure of 

argon. In another round bottom flask fitted with a rubber septum, Pd(OAc)2 (1.7 mg, 0.0076 mmol) 

and rac-BINAP (4.7 mg, 0.0076 mmol) was charged. This flask was evacuated and backfilled with 

argon (this process was repeated a total of 3 times) and then degassed toluene (0.5 mL) was added 

under a positive pressure of argon. This mixture was stirred for 10 min and then the mixture which 

resulted was added to the above pressure tube. The rubber septum was replaced with a screw-cap 

by quickly removing the rubber septum under the flow of argon and the sealed tube was introduced 
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into a pre-heated oil bath at 110 °C. The reaction mixture was maintained at this temperature for 

5 h. At the end of this time period the pressure tube was allowed to cool to rt. The reaction mixture 

was filtered through a short pad of celite, and the pad was washed with ethyl acetate (until no more 

product could be obtained; ≈ 50 mL). The combined organic eluents were washed with water (50 

mL), brine (50 mL), dried (Na2SO4) and concentrated under reduced pressure. The crude product 

was purified by flash column chromatography (silica gel, 20:1 hexanes/ethyl acetate) to afford 

only 16 (61 mg, 92 %) as a pale yellow oil. 

1H NMR (300 MHz, CDCl3) δ 8.18 (s, 1H), 7.28 (t, J = 7.9 Hz, 2H), 6.98 – 6.92 (m, 3H), 6.83 (s, 

1H), 5.52 (s, 1H), 5.29 – 5.17 (m, 1H), 1.36 (d, J = 6.2 Hz, 6H); 13C NMR (75 MHz, CDCl3) δ 

159.2, 143.5, 139.1, 138.2, 130.4, 129.5, 121.1, 116.8, 111.9, 68.8, 22.1; HRMS (ESI-TOF) (m/z): 

[M+H]+ calcd for C14H16ClN2O: 263.0951, found: 263.0958. 

1.5.15. 4-Chloro-6-propoxy-N-phenylpyridin-3-amine (15) 

 Following the above general procedure for 5 h at 110 °C, 4-chloro-5-iodo-2- 

propoxypyridine 13 (75 mg, 0.252 mmol), aniline (27.6 µL, 0.256 mmol), Pd(OAc)2 (1.7 mg, 

0.0076 mmol), rac-BINAP (4.7 mg, 0.0076 mmol)  and Cs2CO3 (410 mg, 1.26 mmol) were heated 

in toluene at reflux to afford a crude liquid which was purified by  flash chromatography (silica 

gel, 20:1 hexanes/ethyl acetate) to furnish a pale yellow oil 15  (60.33 mg, 91 %). 

1H NMR (300 MHz, CDCl3) δ 8.20 (s, 1H), 7.28 (t, J = 7.9 Hz, 2H), 6.98 – 6.93 (m, 3H), 6.89 (s, 

1H), 5.57 (s, 1H), 4.26 (t, J = 6.6 Hz, 2H), 1.89 – 1.77 (m, 2H), 1.06 (t, J = 7.2 Hz, 2H); 13C NMR 

(75 MHz, CDCl3) δ 159.9, 143.6, 139.3, 138.1, 130.6, 129.5, 121.1, 116.7, 111.4, 68.1, 22.4, 10.5; 

HRMS (ESI-TOF) (m/z): [M+H]+ calcd for C14H16ClN2O: 263.0951, found: 263.0946. 

1.5.16. 4-Chloro-6-propoxy-N-(pyridin-4-yl)pyridine-3-amine (17) 

 Following the above general procedure for 6 h at 140 °C, 4-chloro-5-iodo-2-propoxy- 

pyridine 13 (214 mg, 0.72 mmol), 4-aminopyridine (68.8 mg, 0.73 mmol), Pd(OAc)2 (4.8 mg, 
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0.0216 mmol) and rac-BINAP (13.4 mg, 0.0216 mmol) as well as Cs2CO3 (1.17 g, 3.6 mmol) were 

heated in toluene at reflux to afford a crude solid which was purified by  flash chromatography 

(silica gel, ethyl acetate) to furnish a white solid 17  (137 mg, 72 %); mp 119-120 °C,  1H NMR 

(300 MHz, CDCl3): δ 8.28 (d, J = 4.8 Hz, 2H), 8.19 (s, 1H),  6.92 (s, 1H), 6.65 (d, J = 5.4 Hz, 2H), 

6.18 (br, 1H), 4.27 (t, J = 6.6 Hz, 2H), 1.88 – 1.76 (m, 2H), 1.04 (t, J = 7.5 Hz, 2H); 13C NMR (75 

MHz, CDCl3): δ 162.3, 151.7, 150.0, 144.6, 142.0, 126.9, 111.9, 108.9, 68.4, 22.3, 10.5; HRMS 

(ESI-TOF) (m/z): [M+H]+ calcd for C13H15ClN3O 264.0904, found 264.0898. 

1.5.17. 4-Chloro-6-isopropoxy-N-(pyridin-4-yl)pyridine-3-amine (18) 

 Following the above general procedure for 6 h at 140 °C, 4-chloro-5-iodo-2-isopropoxy- 

pyridine 13 (214 mg, 0.72 mmol), 4-aminopyridine (68.8 mg, 0.73 mmol), Pd(OAc)2 (4.8 mg, 

0.0216 mmol) and rac-BINAP (13.4 mg, 0.0216 mmol) as well as Cs2CO3 (1.17 g, 3.6 mmol) were 

heated in toluene at reflux to afford a crude solid which was purified by  flash chromatography 

(silica gel, ethyl acetate) to furnish a white solid 18  (135 mg, 71 %); 1H NMR (300 MHz, CDCl3): 

δ 8.24 (d, J = 4.2 Hz, 2H), 8.18 (s, 1H),  6.87 (s, 1H), 6.74 (d, J = 5.7 Hz, 2H), 5.36-5.23 (m, 1H), 

1.37 (d, J = 6.3 Hz, 6H); 13C NMR (75 MHz, CDCl3): δ 161.9, 152.4, 148.9, 144.8, 142.1, 126.4, 

112.4, 108.9, 69.3, 22.0; HRMS (ESI-TOF) (m/z): [M+H]+ calcd for C13H15ClN3O 264.0904, 

found 264.0910. 

1.5.18. 3-propoxy-9H-pyrido[3,4-b]indole (3-PBC, 1) 

 Following the general procedure for the Heck cyclization for 16 h at 120 °C, 4-Chloro-6-

propoxy-N-phenylpyridin-3-amine 15 (526 mg, 2.0 mmol), Pd(OAc)2 (44.8 mg, 0.2 mmol), (t-

Bu)3P∙HBF4 (116 mg, 0.4 mmol) and K2CO3 (552 mg, 4.0 mmol) were heated in DMA to give a 

solid which was purified by a wash column (silica gel, 5:1 hexanes/ethyl acetate)  to yield  3-PBC 

1 (416.80 mg, 92%).  
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1.5.19. 3-Isopropoxy-9H-pyrido[3,4-b]indole (3-ISOPBC, 2) 

 Following the general procedure for the Heck cyclization for 16 h at 120 °C, 4-Chloro-6-

isopropoxy-N-phenylpyridin-3-amine 16 (526 mg, 2.0 mmol), Pd(OAc)2 (44.8 mg, 0.2 mmol), (t-

Bu)3P∙HBF4 (116 mg, 0.4 mmol) and K2CO3 (552 mg, 4.0 mmol) were heated in DMA to give a 

solid which was purified by a wash column (silica gel, 5:1 hexanes/ethyl acetate)  to yield  3-

ISOPBC 2 (412.30 mg, 91%).  

1.5.20. 8-Propoxy-5H-pyrrolo[2,3-c:4,5-c']dipyridine (6-Aza-3-PBC, 4) 

 Following the general procedure for the Heck cyclization for 16 h at 120 °C, 4-Chloro-6-

propoxy-N-(pyridin-4-yl)pyridine-3-amine 17 (125 mg, 0.475 mmol), Pd(OAc)2 (10.7 mg, 0.047 

mmol), (t-Bu)3P∙HBF4 (27.6 mg, 0.095 mmol) and K2CO3 (131.3 mg, 0.95 mmol) were heated in 

DMA to give a solid which was purified by a wash column (silica gel, 1:24 methanol/dichloro-     

methane)  to yield  6-Aza-3-PBC 4 (97.15 mg, 90%).  

1.5.21. 8-Isopropoxy-5H-pyrrolo[2,3-c:4,5-c']dipyridine (6-Aza-3-ISOPBC, 5) 

 Following the general procedure for the Heck cyclization for 16 h at 120 °C, 4-Chloro-6-

isopropoxy-N-(pyridin-4-yl)pyridine-3-amine 18 (125 mg, 0.475 mmol), Pd(OAc)2 (10.7 mg, 

0.047 mmol), (t-Bu)3P∙HBF4 (27.6 mg, 0.095 mmol) and K2CO3 (131.3 mg, 0.95 mmol) were 

heated to give a solid which was purified by a wash column (silica gel, 1:24 methanol/dichloro-

methane)  to yield  6-Aza-3-ISOPBC 5 (99.31 mg, 92%) 

1.5.22. Large-Scale Synthesis of 3-ISOPBC (2)  

1.5.22.1. Step 1: Synthesis of 4-Chloro-6-isopropoxy-N-phenylpyridin-3-amine (16) 

 4-Chloro-5-iodo-2-isopropoxypyridine 14 (25 g, 84.03 mmol), aniline (7.65 mL, 84.03 

mmol), Pd(OAc)2 (0.57 g, 2.52 mmol) and rac-BINAP (1.57 g, 2.52 mmol) as well as Cs2CO3 

(136.84 g, 420 mmol) were added to a three-neck flask with a reflux condenser. The flask was 

evacuated and backfilled with argon. Degassed toluene (300 mL) was added via a cannula, and the 
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flask was introduced into a preheated oil bath at 110 °C. After 15 h at 110 °C the reaction mixture 

was cooled to rt and filtered through a short pad of celite, and the pad was washed with ethyl 

acetate. The combined organic eluents were washed with water and brine, dried (Na2SO4), and 

concentrated under reduced pressure. The crude product was purified by flash chromatography 

(silica gel, 20:1 hexanes/ethyl acetate) to afford only 16 (19.86 g, 90 %) as a pale yellow oil. 

1.5.22.2. Step 2: Synthesis of 3-isopropoxy-9H-pyrido[3,4-b]indole (2) 

 A heavy-wall pressure tube was equipped with a magnetic stir bar and fitted with a rubber 

septum loaded with 4-chloro-6-isopropoxy-N-phenylpyridin-3-amine 16 (19.86 g, 75.58 mmol), 

Pd(OAc)2 (1.70 g, 7.558 mmol), (t-Bu)3P∙HBF4 (4.39 g, 15.12 mmol) and K2CO3 (20.89 g, 151.16 

mmol).  The vessel was evacuated and backfilled with argon (this process was repeated a total of 

3 times) and degassed DMA (200 mL) was added to this vial via a cannula. The rubber septum 

was replaced with a screw-cap by quickly removing the rubber septum under the flow of argon 

and the sealed tube was introduced into a pre-heated oil bath at 120 °C. The reaction mixture was 

maintained at this temperature for 16 h. At the end of this period, the reaction mixture was allowed 

to cool to rt. The dark brown mixture which resulted was then passed through a short pad of celite. 

The celite pad was further washed with ethyl acetate until no product (TLC; silica gel) was detected 

in the eluent.  The combined filtrate was washed with water, brine, dried (Na2SO4) and 

concentrated under reduced pressure. The solid product was purified by wash column (silica gel, 

5:1 hexanes/ethyl acetate) to afford 3-ISOPBC (2) (15.74 g, 92%) as an off white solid. 
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CHAPTER 2 

BIOLOGICAL EVALUATION OF ANALOGS OF β-CARBOLINE FOR 

POTENTIAL TREATMENT OF ALCOHOL ABUSE 

2.1. INTRODUCTION 

 The β-carboline1 analogs which were synthesized were evaluated to determine the 

biological activity in regard to the reduction of alcohol self-administration as a preclinical analysis 

for the treatment of human alcoholics. To determine the importance of the application of these 

GABAA (Gamma amino butyric acid) receptor ligands to treat disease states in-vivo, in-vitro 

studies were carried out. The efficacy at various GABAA receptor subtypes was determined using 

oocytes2 and HEK (Human Embryonic Kidney) 293T cells3 for the determination of GABAergic 

subtype selective efficacy. Many β-carbolines are known to possess anti-alcohol properties and 

reduce alcohol self-administration in rodent models. This data is required to show the ligands are 

not toxic and paves the way to test these in these higher primate animal models such as baboons 

and rhesus monkeys.1,4-7 In order to determine the metabolic stability of these new ligands and 

safety they were assayed on human liver and mouse liver microsomes8 (Revathi Kodali), 

sensorimotor coordination on the rotarod,9 and righting reflex (Nicholas Zahn) as well as cell 

viability studies (cytotoxicity) by Dr. Stephen.10 The importance of the biological effects of these 

β-carbolines and their profound actions in in-vitro and in-vivo are described below. 

2.2. BIOLOGICAL STUDIES 

 The numbering for the β-carboline analogs are as follows 3-PBC (1), 3-ISOPBC (2), 3-

cycloPBC (20), 3-PBC·HCl (1·HCl), 3-ISOPBC·HCl (2·HCl), and 3-cycloPBC·HCl (20·HCl) 
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and in some case the HCl was omitted for clarity. They were all administered in-vivo as HCl salts 

for they had a much longer shelf life. 

2.2.1. Determination of Efficacy Studies in HEK (Human Embryonic Kidney) 293 Cells 

 Historically the β-carbolines and their analogs are known to be modulators of GABAA 

receptor subtypes.11 To determine the subtype specific efficacy of these compounds, 

electrophysiological recordings were performed on HEK 293T cells by expressing different α 

subunit subtype GABAA receptors.12 This was carried out by Dr. Janet Fischer (Medical College 

of South Carolina). The 1·HCl, 2·HCl, and 20·HCl compounds were applied to the HEK 293T 

subtype selective GABAA receptors at 0.1 µM, 1 µM, and 10 µM concentrations to determine the 

effect of sensitivity to modulation in HEK 293T cells with co-application of GABA. The 

concentration of GABA represented an EC < 5 µM for each isoform12 and actually was 0.1 µM 

(α6), 0.3 µM (α4, α5), 1 µM (α1, α2) or 3 µM (α3). 
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Figure 2-1. The average enhancement of the current evoked due to GABA alone and GABA with positive 

allosteric modulators 3-PBC·HCl (1·HCl), 3-ISOPBC·HCl (2·HCl) and 3-cycloPBC·HCl (20·HCl) on α1-, α2-, 

α3-, α4-, α5-, and α6- subtype GABAA receptors was illustrated. The concentrations tested were 0.1 µM, 1 µM, 

and 10 µM, respectively, for each compound (except 1 µM for 3-cycloPBC (20·HCl) for α1 and α3).  The peak 

current amplitude was divided by the response to GABA alone for each cell. The dashed line at 100% indicates 

the response to GABA alone. Bars represent mean ± SEM (n = 4−8). EC < 5 µM of GABA [0.1 µM (α6), 0.3 µM 

(α4, α5), 1 µM (α1, α2) or 3 µM (α3)] 



www.manaraa.com

 

32 

 

 The HEK 293T cells were transiently transfected with one of six different α subunit 

subtypes (α1 to α6) as well as the same β (β 3) and γ (γ2L) subunits. The HEK 293T cells were 

patch clamped at -50 mV with the application of GABA alone [EC < 5 µM, 0.1 µM (α6), 0.3 µM 

(α4, α5), 1 µM (α1, α2) or 3 µM (α3)] or GABA plus modulator for 5 sec to assess the whole cell 

recording. The amount of GABA applied to determine sensitivity to modulation was less than the 

submaximal concentration of 0.1 µM to α6, 0.3 µM to α4 and α5, 1 µM to α1and α2, and 3 µM to 

α3 subtypes. The modulation of the GABA alone on different subtypes was considered as 100 % 

indicated by the horizontal dashed line in Figure 2-1. The effects of all three modulators on α1 to 

α6 subtypes at all concentrations tested are represented in Figure 2-1. The 1·HCl ligand had shown 

an enhanced positive modulation on all α subtypes compared to GABA alone, and this was 

observed at higher concentrations of 10 µM of ligand in relation to 0.1 µM and 1 µM. However, 

even at 1µM this is a much higher concentration than a pharmacologically relevant dose (0.10 – 

0.25 µM). For all practical purposes the efficacy of 1·HCl was zero except at the α6 subtype in 

this assay. The 1·HCl had a significant potentiation compared to GABA alone, but it was less than 

the potentiation at 10 µM, as expected. The 1·HCl also exhibited higher similar potentiation with 

α3 and α6 subtypes at higher concentrations. In contrast, the 2·HCl and 20·HCl had significant 

potentiation at α6β3γ2 subunit, and these compounds have less prominent modulation on α1 to α5 

subtypes at all concentrations studied. All three compounds tested have a positive modulatory 

potentiation on the α6 subtype, which signifies the high efficacy of these compounds selective to 

GABAA receptors containing α6 subunits acting as positive allosteric modulators (PAM). 

However, the efficacy at α6 was not very potent except at 10 µM which is a much higher 

concentration than every reached at a pharmacologically relevant dose. The potentiation of the 

2·HCl and 20·HCl was less pronounced compared to 1·HCl at concentrations of 1 µM and 10 

µM. The combined modulatory effects with the whole cell recording currents due to the three 
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compounds on different subtypes at 10 µM concentration are represented in Figure 2-2. The 

efficacy pattern for all three ligands was the same except at 10 µM which clearly indicated 1·HCl 

was more potent. The major difference was only significant at the highest concentration of ligand. 

The ligands 3-ISOPBC·HCl, and 3-cycloPBC·HCl are clearly less potent in this assay than 3-

PBC·HCl (see below). 

 

Figure 2-2. The average enhancement of the current evoked by GABA alone and GABA with positive allosteric 

modulators 3-PBC·HCl (1·HCl), 3-ISOPBC·HCl (2·HCl) and 3-CycloPBC·HCl (20·HCl) on α1-, α2-, α3-, α4-, 

α5-, and α6- subtype receptors was indicated all in one graph at concentrations of 10 µM. The peak current 

amplitude was divided by the response to GABA alone for each cell. The dashed line at 100% indicates the 

response to GABA alone. Bars represent mean ± SEM (n = 4−8). The 10 µM concentration far exceeds a 

pharmacologically relevant dose and so does 1 µM. EC < 5 µM of GABA [0.1 µM (α6), 0.3 µM (α4, α5), 1 µM 

(α1, α2) or 3 µM (α3)] 

 The GABAA receptor ligands studied here do not have any significant positive modulation 

on the α1 through α5 receptor subtypes at pharmacologically relevant concentrations nor do they 

exert a decrease in sensitivity that would provide negative currents. The null effects of these β-
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carbolines at 0.1 µM indicate that at these particular GABAA receptor subtypes and concentrations 

these ligands may act as antagonists. This may be the mechanism of the anti-alcohol effects of 

these analogs similar to that proposed by June et al. for βCCt and 3-PBC·HCl earlier in rats.13,14 

The decreased consumption of alcohol in the pre-clinical models are may be due to antagonist 

activity of these β-carbolines at α17 and perhaps α26 GABAA receptors in the central nervous 

system. The exact mechanism of action in rats and in non human primates is not fully understood 

at this time, but it is an important preclinical result. This is because α1β3γ2 subtypes are found in 

the ventral tegmental area (especially α1 GABAA receptors).  

 Because of the slightly more positive modulation and selective efficacy of these β-

carbolines at α6 subtypes in HEK 293T cells, initially the 2·HCl and 20·HCl were tested in a 

different GABAA receptor isoform (α6β3δ) which contains the delta (δ) subunit. Delta subunits 

have been implicated previously in reduction of alcohol self-administration in some rodent models, 

but these results are not unambiguously established. The whole cell current recordings of HEK 

293T cells for 2·HCl and difference in the potentiation between α6β3γ2 and α6β3δ receptor 

subtypes for 2·HCl and 20·HCl, are shown in Figure 2-3. In addition to the discussion above, 

these α6β3δ subtype receptors are insensitive to benzodiazepines (such as diazepam) and different 

than most conventional modulators that require gamma subunits. The δ subunit GABAA receptors 

are highly distributed in the cerebellum which mediates the effects of alcohol on motor 

coordination function.15,16 Moreover α6 GABAAR have been implicated in drugs involved in 

alcohol abuse in some reports, as mentioned.17 
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Figure 2-3. Cells were transiently transfected with the α6 subtype, as indicated, along with β3 and δ, and voltage 

clamped at −50 mV. Representative whole-cell currents are shown for 5 sec applications of GABA alone (gray) 

or GABA + 0.1 μM modulator (black). EC < 5 µM of GABA [0.1 µM (α6), 0.3 µM (α4, α5), 1 µM (α1, α2) or 3 

µM (α3)] 

 The whole cell currents with only GABA applied for 5 seconds are represented by the gray 

color, and the signal from the potentiated current with both GABA and positive modulator 2·HCl 

are represented in black (Figure 2-3B). The application of 2·HCl and 20·HCl at 10 µM had 

increased the modulatory currents at the α6β3δ receptor subtype. However, the sensitivity and 

response were similar to the other α6β3γ2 GABAA receptor subtypes at 0.1 µM which indicated 

the efficacy towards α6β3δ and α6β3γ2 receptor subtypes was about the same (Figure 2-3A). The 

other β-carboline analogs will be studied further if they exhibit any high potential efficacies 

towards the δ subtype containing GABAA receptors for their ability to mediate alcohol self-

administration. In addition to potential effects of these compounds mediated by α1 and α2 GABAA 

receptors,5,6 these PBC isoforms (1·HCl, 2·HCl, βCCt, and 20·HCl) have shown the same efficacy 

towards α6 subtype GABAA receptor but only at extremely high ligand concentrations. Our 

hypothesis (right or wrong) has been that the β-carbolines act as antagonists at α1 subtypes (50 % 

of GABA subtypes) similar to the α1 antagonist βCCt and stabilize the antagonist conformation of 

α1 Bz/GABA receptor thereby interfering slightly with the tonic control of the GABA system. 

This results in a slight decrease in chloride flux in the ventral tegmental area, which results in a 
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slight decrease in dopamine levels on exposure to alcohol rather than a big increase in this level. 

The result is less reason (dopamine) to drink but without the anhedonia and depression sometimes 

associated from naltrexone and other anti-alcohol agents. 

2.2.2. Efficacy Studies in Xenopus laevis Frog Oocytes and Receptor Binding 

 The β-carboline analogs 2·HCl and 1·HCl were assayed to determine their efficacy in 

Xenopus laevis oocytes expressing specific GABAA receptor subunits (α(1,4,5 and 6)β3γ2) as 

shown in Figure 2-4.2 The efficacy studies included the measurement of chloride currents using a 

two-electrode voltage patch clamp at GABA 3% effective concentration (EC3). 

 

Figure 2-4. A, Augmentation of GABA-induced currents in oocytes expressing GABAA receptors of specified 

subunit composition by 3-ISOPBC·HCl (2·HCl). B, Augmentation of GABA-induced currents in oocytes 

expressing GABAA receptors of specified subunit composition by 3-PBC·HCl (1·HCl). 
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 From the electrophysiological experiments conducted with oocytes expressing 

heterologous GABAA receptor systems at varying concentration of 1 nM to 30 µM, it was observed 

that the 1·HCl and 2·HCl had shown some functional agonist efficacy at α6 GABAA receptor 

subunits. However, the concentrations of the ligands had to be so high (> 3 µM) to see an agonist 

response, these data really have no pharmacological relevance (100 nM-200 nM; M.Savic, 

W.Sieghart, private communication). The activity of 2·HCl at the α6 subunit was in the agonist 

direction at 10 µM but was much less than the classic 3-PBC·HCl (1·HCl) at the same 

concentration (10 µM) which confirms neither of these are potent agonists at α6β3γ2 subtypes. 

The importance of the data in this assay demonstrates the two ligands 1·HCl and 2·HCl do not 

exhibit potent agonist potentiation at the α1 subunit in agreement with the previous hypothesis. In 

earlier studies the anti-alcohol properties of β-carbolines were felt due to the antagonist properties 

of βCCt and mixed antagonist-agonist properties of 2·HCl. In agreement with this these two 

compounds 1·HCl and 2·HCl exhibited none of the side effects of diazepam even at 

concentrations of 30 µM. As indicated in Figure 2-4, there was little or no efficacy of 2·HCl nor 

1·HCl at α4 or any other subtype studied. In this regard 2·HCl did resemble known the anti-

alcohol agent 1·HCl at pharmacologically relevant concentrations. 

Table 2-1. The binding affinity of 3-ISOPBC (2·HCl) at αxβ3γ2 GABAA receptor subtypes using [3H]-

flumazenil displacement studies. 

 

  

 The in-vitro binding of 3-ISOPBC·HCl (2·HCl) was carried out on α(1,2,3 and 5)β3γ2 

GABAA receptor subunits18 and Ki values were determined, as shown in Table 2-1, by Dr. Petra 

Scholze. The 2·HCl analog did bind to the α1 subunits with a moderate Ki value of 330 ± 160 nM 

which was more potent in relation to the concentration required to displace flumazenil at the other 

compound Ki ± SEM (nM) 

     

3-ISOPBC·HCl (2·HCl) 330 ± 160 2300 ± 150 1300 ± 110 10000 ± 1100 
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receptor subunits. This did indicate a moderate binding affinity for 2·HCl at α1β3γ2 GABAA 

receptors as opposed to little or no affinity at the other subtypes. The lead 3-PBC·HCl (1·HCl) 

also bound more potently at α1β3γ2 GABAA and did reduce alcohol self-administration in 

primates.7,19 

2.2.3. Effect of 3-Isopropoxy-β-carboline Hydrochloride (2·HCl) on Alcohol Seeking and 

Self-administration in Baboons7  

 Because Dr. Majorie Gondre-Lewis had shown 2·HCl decreased alcohol self-

administration in maternally deprived rats6, moreover, there were no overt adverse behavioral 

effects, this ligand was cleared for study in primates. Because the pharmacological effect of 

GABAA receptor ligands depends mainly on the selectivity of compounds to a specific subunit, 

this controls various behavioral effects to drugs including alcohol.20 The α1 subunit of 

benzodiazepine GABAA, which has been shown earlier13,21 to be involved in the reinforcing and 

abuse related effects of alcohol,6,11,22 is the most widely expressed subunit in the brain. The 

mechanism of α1 receptor involvement with alcohol responding was tested in α1 GABAA knock 

out mice and indicated a decreased response to alcohol over water. In a self-administration study 

with these mice, the alcohol intake was reduced but was also associated with the low intake of 

saccharin and sucrose drinking.23,24 The systemic or microinfusions of 1·HCl (3-propoxy-β-

carboline hydrochloride) and βCCt (β-carboline-3-carboxylate-tert-butyl ester) into the ventral 

pallidum region of high alcohol drinking (HAD) rats significantly decreased alcohol intake.13,21 In 

another study with primate models, 3-PBC·HCl (1·HCl) was given by chronic administration to 

baboons and demonstrated multiple effects; 3-PBC·HCl decreased the alcohol self-administration 

responding, decreased the volume of alcohol consumption, (g/kg alcohol intake), and had positive 

effects on the control non-alcohol (sucrose) reinforcement.25 
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 Because of the confirmation of the α1 antagonistic activity for 2·HCl and βCCt in 

primates,26 and in rhesus macaques,27 these in-vitro and in-vivo studies,13,14 as well as data 

described above, prompted the synthesis of the new analog, the 3-isopropoxy-β-carboline 

Hydrochloride (2·HCl).1 There were several advantages observed with the 2·HCl; it exhibited 

seven fold selectivity for α1β3γ2 subtypes compared to α2 and α3 subtypes and thirty fold higher 

selectivity over the  α5 GABAA subunit. Studies of this 2·HCl on the rotarod did not show signs 

of ataxia, sedation, or loss of righting reflex. Moreover, it was hoped that the branched isopropyl 

group would slow down the metabolism by retarding beta (omega-1) oxidation and increase the 

duration of action of 2·HCl in the in-vivo conditions. The effect of 2·HCl in both chronic and 

acute administration was assayed in baboons to address alcohol seeking behavior and self-

administration. When the 2·HCl was given in both chronic and acute studies intramuscularly to 

determine alcohol consumption and pattern of drinking, it was given at a dose of 5 -20 mg/kg. The 

drinking sessions were conducted with a continuous scheduled reinforcement procedure,7 and 

stable drinking was observed during the baseline sessions. This is a typical protocol for drug effect 

studies on alcohol self-administration in baboons by Dr. Elise Weerts.7 

2.2.3.1. Effects of Acute Administration of 3-ISOPBC·HCl (2·HCl) 

 The acute administration of 2·HCl under a chain schedule of reinforcement did not show 

any significant variation in the self-administration response and consumption pattern of alcohol 

(g/kg alcohol consumed; base line (1.1 g/kg), vehicle (1.2 g/kg), 10mg/Kg 3-ISOPBC·HCl (1.1 

g/kg), 20 mg/kg 3-ISOPBC·HCl (1.0 g/kg), and 30 mg/kg 3-ISOPBC·HCl (1.0 g/kg) at any dose 

of drug from 10 mg/kg to 30 mg/kg. However, there were no abnormal behavioral patterns 

observed at the higher dose of 30 mg/kg which indicated the drug was safe with no side effects of 

sedation, motor in-coordination, gastrointestinal symptoms, or muscle relaxation at the high dose. 

The lack of significant effect on acute administration and solubility problems encountered at 30 
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mg/kg together with the necessity of large amounts of 2·HCl prompted continued studies with 

chronic administration. 

2.2.3.2 Effects of Chronic Administration of 3-ISOPBC·HCl (2·HCl) 

 The effect of chronic administration of 3-ISOPBC·HCl (2·HCl) for five days on the self-

administration response and g/kg alcohol consumption was determined and presented in Figure 2-

5. There was a significant decrease in the alcohol consumption observed at 10 mg/kg as compared 

to vehicle (50 % saline, 37.5 % propylene glycol, and 12.5% ethanol). The chronic administration 

led to a reduction in the g/kg of alcohol at 5 mg/kg, 10 mg/kg and 20 mg/kg dose of 2·HCl relative 

to control groups. The different doses of 2·HCl did not the decrease the responding for the non-

alcohol beverage (orange flavored, sugar free, Tang® powder (Kraft food) dissolved in reverse 

osmosis purified drinking water) in the control groups. 
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Figure 2-5. Effects of chronic (5 days) administration of 3-ISOPBC·HCl (2·HCl) (5.0–20.0 mg/kg) on 

consumption in Component 3 of the chained schedule of reinforcement in the (A) Alcohol Group and (B) 

Control Group. Data shown are the group means (+ SEM) of self-administration responses (left panels), and 

g/kg alcohol consumed for the alcohol group and ml/kg consumed for the control group (right panel). Baseline 

responding is indicated by the horizontal, dashed lines. *indicates p < 0.05 for pair-wise comparison for each 3-

ISOPBC (2·HCl) dose vs. vehicle. 

 The effect of 2·HCl on the pattern of drinking with the number of drinks in the first bout 

and duration of the first bout is illustrated in Figure 2-6. In the alcohol group, the 2·HCl at 10 

mg/kg and 20 mg/kg decreased the number of drinks in the first bout prominently compared to the 

5 mg/kg dose. However, the reduction was seen at all doses. Similarly, there was a reduction in 

the duration of the first drinking bout and was significant at a dose of 20 mg/kg with chronic 

administration. In the control group, the 2·HCl did not have any effects on a number of drinks or 

duration of drinking at any dosage. 
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Figure 2-6. Effects of chronic (5 days) administration of 3-ISOPBC·HCl (5.0–20.0 mg/kg) on the pattern of 

drinking in the first drinking bout in Component 3 of the chained schedule of reinforcement in the (A) Alcohol 

Group and (B) Control Group. Data shown are the group means (+ SEM) of the number of drinks in the first 

drinking bout (left panels), and the duration (seconds) of the first drinking bout (right panels). Baseline 

responding is indicated by the horizontal, dashed lines. *indicates p < 0.05 for pair-wise comparison for each 

3-ISOPBC·HCl dose vs. vehicle. 

 The present study focused on the evaluation of the effects 2·HCl on alcohol seeking 

behavior in baboons with acute and chronic drug administration in regard to a potential safe 

treatment for human alcoholics. The pretreatment with 2·HCl did not have any effect on alcohol 

seeking in the self-administration alcohol groups or self-administration non-alcohol beverage 

control groups, which was the similar to the case with 3-PBC·HCl (1·HCl) under the chain 
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scheduled reinforcement.25 In contrast, the 2·HCl given under chronic conditions was highly 

effective and reduced the alcohol intake in the alcohol group without affecting the consumption of 

the non-alcohol drinking in the control groups, which demonstrates in these studies in baboons, 

the effects of 2·HCl are specific to alcohol drinking. In addition, as discussed elsewhere 2·HCl 

had no effects on other receptors in the NIMH-supported 47 panel PDSP screen by Bryan Roth 

(University of North Carolina; TI-02-IsoPBC·HCl). Moreover, it was more potent than earlier 

work with 3-PBC·HCl (2·HCl) in baboons by Kaminski, Weerts etal.25 

2.2.4. Potential Role of the α1 Bz/GABAA Subunit-Containing Receptor in a Rhesus Monkey 

Model of Alcohol Drinking and Effect of βCCt and 3-PBC·HCl4 

 Alcohol abuse and dependence are common problems today, and there is a need for proper 

pharmacotherapy to fight these in the society as described above. There is evidence that GABAA 

receptors play a major role in the behavioral effects of alcohol and abuse.28,29 Apart from the five 

different subunit subtypes (see above), αβ3γ2 Bz/GABAergic subunits are involved in the 

behavioral effects due to alcohol abuse and drug dependence.28 In this study, the role of α subunits 

was evaluated with the α1 preferring ligands and non-selective typical benzodiazepines to 

determine the effect on alcohol self-administration and behavioral patterns in rhesus monkey 

models.4 The amount of alcohol intake was measured by the blood alcohol levels (BALs), and 

various behavioral observations with definitions and are summarized in Table 2-2. It must be 

pointed out at the outset that the work by Weerts et al. was in baboons, while that of Platt et al. 

was in rhesus monkeys. The strains of animals are different in the two studies, moreover, the 

paradigms are different. 
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Table 2-2: Behavioral Categories, Abbreviations, and Definitionsa

 

aAdapted from Ruedi-Bettschen and colleagues,30 Weerts and colleagues,31 and Platt and colleagues.27,32 

 

2.2.4.1. Drinking Behavior 

 The animals were properly trained as previously reported27,30-32 and the data was collected 

over a span of 3-4 years for the baseline drinking conditions of alcohol. The average drinking of 

alcohol and sucrose by different rhesus monkeys was the same except two individuals and are 

presented in Table 2-3.27,32 Apart from these, there was no significant difference in the volume of 

alcohol and sucrose consumption by different groups during baseline conditions that were later 

used to study with different analogs as shown in Table 2-3. The BALs in animals with vehicle 

administration was above 80 mg/dL, which is the legal driving limit in humans (zolpidem veh: 

82.8 ± 9.4 mg/dL; βCCT veh: 93.6 ± 6.1 mg/dL; 3-PBC veh: 99 ± 20.4 mg/dL; triazolam veh: 88.1 

± 13.6 mg/dL; flumazenil 87.6 ± 9.3 mg/ dL; βCCE veh: 97.8 ± 8.3 mg/dL). 
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Table 2-3. Average Baseline Intake for Each Monkey Across the Duration of the Study.

 
Values are presented as mean (standard error). N/A, not applicable; †p-value reflects results of 1-way ANOVAs 

for individual animals and results of t-test for the group value. *Post hoc tests indicate significant differences 

between 3-PBC and triazolam baseline intake. **Post hoc tests indicate significant differences in flumazenil 

versus βCCT, 3-PBC, and triazolam baseline intakes. 

 

2.2.4.2 Effect of α1β3γ2 Bz/GABA(A)ergic Preferring Compounds on Alcohol Drinking 

 The amount of alcohol intake was analyzed by employment of three α1 preferring ligands 

[zolpidem, βCCt, and 3-PBC·HCl (1·HCl)]. The treatments were with the α1 preferring agonist 

zolpidem (0.1 to 10.0 mg/kg), α1-preferring antagonist βCCT (0.3 to 3.0 mg/kg) and the antagonist 

3-PBC·HCl (1·HCl, 0.03 to 10 mg/kg). The three α1 modulators did not cause any significant 

decrease in alcohol intake or amount of BALs or number of sipper extensions, as illustrated in 

Figure 2-7 with the top closed symbols.  
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Figure 2-7. The effects of varying doses of α1 GABAA preferring compounds on intake (top) and latency to first 

sipper extension (bottom) for alcohol (closed symbols) and sucrose (open symbols). None of the α1 GABAA 

preferring compounds significantly affected intake of either alcohol or sucrose. *Indicates p < 0.05 compared 

with respective vehicle baseline.27,32 

 The increase in latency of first sipper extension was observed with zolpidem in 4/5 

monkeys at a dosage of 3 mg/kg and in 3/3 monkeys at 10 mg/kg. The dose of βCCT increased the 

latency at 3.0 mg/kg in 6/6 monkeys, and 1·HCl at 10 mg/kg in 6/6 monkeys, as presented in Table 

2-4. The compounds did not have any effect on the sucrose drinking (controls) in monkey models, 

as shown in Figure 2-7 with the open symbols. The lack of α1 antagonistic effects of βCCT and 

1·HCl on the sucrose drinking pattern of monkeys indicate that these compounds are highly 

selective in increasing the latency specifically for alcohol intake, and the ligands do not have any 

adverse behavioral effects.   
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Table 2-4. The Effects of Benzodiazepine Receptor Ligands on Alcohol and Sucrose Drinking Parameters 

 
βCCE, β-carboline 3-carboxylate ethyl ester; βCCT, β-carboline-3-carboxylate-tert-butyl ester; 3-PBC, 3-

propoxy-β-carboline hydrochloride. The direction of significant effects is indicated by ↓ (decrease), and ↑ 

(increase), or = (no change). Doses at which significant effects occur are indicated in parenthesis and reported 

in milligram per kilogram. aNo blood draws extension or latency recorded for 0.3 mg.kg due to the presence of 

seizures. 

 

2.2.4.3. Effect of Nonselective Benzodiazepines Ligands on Alcohol Drinking 

 The rhesus monkeys were also treated with a nonselective typical benzodiazepine to 

determine that effect on the alcohol and sucrose drinking behavior and are presented in Table 2-4. 

The nonselective benzodiazepine agonist triazolam given at 0.001 to 10.0 mg/kg, lead to an 

increase in the alcohol intake (Figure 2-8 top, closed symbols), but increased the latency to first 

sipper extension (Figure 2-8, bottom) and decreased BAL (Blood Alcohol Level) in the end session 

of alcohol intake at a higher dose of 0.056 mg/kg. The BAL in the end session with triazolam was 

27.3 ± 12.4 mg/dl, whereas in the case of vehicle administration the BAL was 88.1 ± 13.6 mg/dl. 

The triazolam had an increased effect on sucrose intake and increased latency to the first sipper at 

higher doses than it produced in the same effect on the alcohol intake, shown in Figure 2-8 top, 

open symbols. The increased sucrose consumption was observed at 0.1 mg/kg, and increased 

latency to first sipper extension was noted at 0.56 mg/kg. There was no effect of the nonselective 

benzodiazepine agonist triazolam on the number of sipper extensions either in the case of alcohol 

or sucrose.  
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Figure 2-8. The effects of varying doses of nonselective benzodiazepine receptor ligands on intake (top) and 

latency to first sipper extension (bottom) for alcohol (closed symbols) and sucrose (open symbols). None of the 

nonselective benzodiazepine compounds significantly affected intake for either alcohol or sucrose. *Indicates p 

< 0.05 compared with respective vehicle baseline. Ψ Indicates data for 0.3 mg/kg, βCCE was not included in 

statistical analyses due to the presence of seizures in 1 animal at this dose. βCCE, β-carboline 3-carboxylate 

ethyl ester. 

 The treatment with nonselective benzodiazepine antagonist flumazenil daily at a dose of 

0.1 to 10 mg/kg did not have any profound effect on alcohol intake or the first sipper extension. In 

addition to the lack of effect, flumazenil further enhanced the number of extensions (Figure 2-8, 

center) and decreased overall BALs. Flumazenil did not have any effect on the sucrose drinking at 

any administered dose. The inverse agonist βCCE was given to monkeys at 0.03 to 0.18 mg/kg; it 

decreased the number of sipper extensions at the highest dose without affecting any other alcohol 

drinking measurements, as shown in Table 2-4. The other effect observed with the βCCE was 

increased latency to first sipper extension for sucrose drinking but lacked other drinking effects 

with sucrose at any dose. There was discontinuation of the study at 0.3 mg/kg (BCCE) for the 

alcohol group of monkeys due to the appearance of seizures. However, the sucrose group with the 

same dose administration does not show any seizures in the animals.  
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2.2.4.4. Observable Behavioral Effects with α1 Preferring Compounds 

 The effect of α1β3γ2 Bz/GABA(A)ergic ligands on the behavior of rhesus monkeys was 

observed with the treatment of zolpidem, βCCT, and 1·HCl. Zolpidem at the dose of 3.0 and 10.0 

mg/kg significantly increased the frequency scores for ataxia in the alcohol group of animals. The 

sucrose group of rhesus monkeys did not show any effect at any dose of zolpidem tested. No, other 

profound behavior changes were seen in the alcohol group with any dose tested (Table 2-5). 

Table 2-5. Summary of Drug Effects on Selected Observable Behaviors 

 
βCCT, β-carboline-3-carboxylate-tert-butyl ester; 3-PBC, 3-propoxy-β-carboline hydrochloride. The direction 

of significant effects is indicated by ↓ (decrease), ↑ (increase), or = (no change). Doses at which these effects 

occur are indicated in parentheses and reported in milligram per kilogram. 

 βCCt administration significantly decreased the frequency scores for tactile/oral behaviors 

in alcohol drinking animals. At the dose of 0.3 mg/kg, βCCT decreased frequency for tac/oral 

behavior in 3/6 monkeys, no monkeys at 1 mg/kg, and 4/6 monkeys at 3.0 mg/kg in the alcohol 

drinking group. There was an increased score for self-directed behavior such as aggregated self-

grooming and scratching at 3.0 mg/kg in alcohol group in comparison to vehicle administration in 

animals. In the sucrose drinking group, βCCT decreased foraging behavior patterns at 0.3 mg/kg 

(4/4 monkeys) and 3.0 mg/kg (5/5 monkeys) but did not have any effect on tac/oral or self-directed 

behavioral observations. The 1·HCl similar to βCCT increased the self-directed responses at 10.0 

mg/kg in the alcohol group compared to vehicle administration. In contrast to βCCt the 1·HCl 

decreased the foraging behavior in both alcohol and sucrose groups of rhesus monkeys. The other 

observation noted with 1·HCl was increased yawning at 10.0 mg /kg and passive visual behavior 
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at both 5.6 and 10.0 mg/kg doses only in sucrose group compared to vehicle receiving models but 

not in alcohol drinking group. 

 From the findings of this study, it was observed that α1 preferring Bz/GABAA ligands 

demonstrated a noticeable effect on increasing the latency to complete the first alcohol drink 

without affecting the control or sucrose groups. Both βCCT and 1·HCl demonstrated a profound 

effect on increasing the time to complete the alcohol drinking. However, these two β-carbolines 

do not show any effect on the intake number or a number of sipper extensions, or BALs. The 

response due to βCCT or 1·HCl administration on the sucrose drinking was nil, which indicated 

the effects were specific to alcohol use. Interestingly, the behavior of ataxia was not observed with 

any of the doses that reduced alcohol drinking in the rhesus monkeys. It appears, as expected, the 

effect of βCCt and 1·HCl at these doses was as a α1 antagonist. The study of effects of various α1 

GABAA receptor ligands and their effect on the alcohol drinking and behavioral patterns signify 

the involvement of α1β3γ2 GABAergic receptor subtypes of the GABA receptor system in these 

studies. 

2.2.5. The Potential Effect of 3-PBC·HCl in Early Life Stress Induced Impulsivity and 

Excessive Alcohol Drinking in Adult MS Rats6  

 The risk of development of drug addiction and dependence in most individuals is related 

to the experience of stress during their early childhood. The early life stress is often related to the 

abnormal behavioral mood disorders and increase substance use in adulthood.22,33 The stress in 

infancy leads to neuronal changes in the limbic system and hyperactivity in hypothalamus-

pituitary-adrenal (HPA) axis that results in elevated levels of corticosterone, glucocorticoids and 

their metabolites.34 Even though the defined mechanism is lacking, there is evidence that children 

under stress are more liable to binge drinking and experience impulsivity especially cognitive 

impulsivity which is most common with drug addiction.35-37 The impulsive nature is associated 
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with the GABA signaling system in the corticolimbic system and also plays a major role in rodent 

models exposed to Maternal Separation (MS). The GABAA α1 receptors in the amygdala and 

hippocampus are known to be vital in mediating the binge drinking in MS models. However, there 

is recent genetic evidence in human linkages that potentially implicates the role of GABAA α2 

receptors and interference with binge drinking and impulsivity.  

 MS models exhibit a high expression of corticotropin releasing factor (CRF) in stress loci 

that lead to neuronal modifications in the prefrontal cortex (PFC), nucleus accumbens, and 

hippocampus, which are known to constitute the reward and emotional memory circuits.38-40 The 

binge drinking and high alcohol consumption are mediated by elevated CRF,41,42 with activation 

of polymorphic CRF1 receptors in the central amygdala.43  

 The rodent and nonhuman primate models44 under MS are known to self-administer more 

alcohol at the age of adults than controls.45,46 In this study the proposed GABAA α2 subunit ligand 

1·HCl was used to determine its effects on reducing binge drinking and impulsivity in MS rat 

models. It must be pointed out that although Lueddens and Gondre-Lewis term 3-PBC·HCl 

as α2 subtype preferring ligand, its activity was not antagonized by flumazenil, consequently, 

the effect cannot be at the α2β3γ2 Bz/GABA site. According to the National Institutes of Health, 

binge drinking is defined as an increase in the blood alcohol concentration (BAC) level to ≥ 80 

mg% within 2 hours.47 Impulsivity is highly linked to numerous neurochemical and anatomical 

changes in the brain associated with decision making and risky behavior. The tendency to respond 

prematurely without focusing on the consequences or having no foresight is regarded as 

impulsivity which is measured by delay discounting (DD) techniques.48 The rats separated from 

their mother every day for 3 hours are used as MS models for early life stress that could result in 

high alcohol consumption and impulsive behavior. This was developed by Koob et al.,47 and 

employed by many investigators as a model of binge drinking. 
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2.2.5.1. Measurement of Baseline Operant Responding 

 The rats were stabilized on an FR8 schedule for 8 days; the responding for alcohol and 

impulsive behavior was recorded between the control (CTL) and MS rats. The alcohol responses 

and BAC are presented in Figure 2-9 (A). The MS rats demonstrated a higher level of responding 

to alcohol compared to controls (CTL). The BAC’s are measured in all MS rats for 5 days, in two 

45 minute sessions. The level of alcohol in the blood of MS rats was 99.3 ± 3.2 mg%/dL which 

was 52.9 ± 6.2 mg%/dL in CTL rats (Figure 2-9B). The complex impulsivity behavior was 

measured using the adjusted amount delay discounting. Impulsive nature is determined based on 

the reward chosen, the lesser reward chosen faster was denoted as higher impulsivity. From the 

normal operant conditions, the impulsivity behavior was observed as higher in MS rats in relation 

to CTL rats, as depicted in Figure 2-9C. 
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Figure 2-9. Baseline operant responding for alcohol, blood alcohol concentration and delay discounting 

(impulsivity) of MS versus CTL rats. (A) Responding for alcohol was increased in maternally separated (MS) 

rats (N=10) compared to control (CTL) rats (N=10). (B) BACs of MS rats (N=4) were elevated above those of 

CTL rats (N=4) and were > 80 mg%/dL following 2 h of drinking. (C) Adjusted amount was decreased 

[impulsivity is elevated] in MS rats (N=11) compared to CTL SD rats (N=9). *p≤ 0.05 by ANOVA followed by 

post-hoc tests. 

 

2.2.5.2. Antalarmin Decreases Impulsivity and Binge Alcohol Drinking in MS Rats 

 To determine the role of CRF (corticotropin releasing factor) and elevated levels of CRF 

in CeA and mPFC of the MS rats, the antalarmin (CRF 1 receptor antagonist)6 was directly infused 

into the CeA and mPFC areas of the brain at 2 µg and 4 µg. The two doses of the CRF antagonist 

were given to alcohol drinking MS and sucrose drinking MS rats to evaluate the effect of 
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antalarmin in drinking of alcohol and on the non-alcohol beverage. Antalarmin had shown a 

significant decrease in both the operant responding and impulsivity nature for alcohol when 

injected into both the CeA and mPFC regions of MS rats without having any effect on sucrose 

drinking, as represented in Figure 2-10 and 2-11.6 The effects of reduction of operant responding 

and impulsive behavior was confirmed by post hoc analysis (p ≤ 0.05). 

Figure 2-10. Effects of antalarmin injected into the CeA on delay discounting, operant binge drinking, sucrose 

drinking. (A) Both doses of antalarmin (N=6/dosage group] reduced operant responding for alcohol of MS rats 

compared to vehicle-treated MS rats (N=6). (B) Both 2 and 4 µg doses of antalarmin (N=6/dosage group] 

microinjected into the CeA of MS rats elevated adjusted amount (decreased impulsivity) compared to vehicle 

treatment in MS rats (N=6). (C) Both doses of antalarmin in the CeA (N=5/dosage group) did not alter the 

responding of MS rats for sucrose as compared to vehicle (N=5). *p ≤ 0.05 by ANOVA. 

 

 

 

 
Figure 2-11. Effects of antalarmin injected into the mPFC on delay discounting, operant binge drinking and 

sucrose drinking. (A) Both 2 and 4 µg doses of antalarmin microinjected into the mPFC decreased impulsivity 

(elevated adjusted amount) in MS rats (N=6/dosage group) compared to vehicle treatment (N=6). (B) Both 

doses of antalarmin also reduced responding of MS rats (N=4/dosage group) for alcohol as compared to vehicle 

(N=4). (C) Both doses of antalarmin in the mPFC (N=5/dosage group) did not alter the responding of MS rats 

for sucrose compared to vehicle (N=5). *p ≤ 0.05 by ANOVA. 
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2.2.5.3. Increased Expression of GABAA α2 Receptors in the CeA and mPFC of naïve MS 

Rats 

 GABAA α2 receptors are known to play an important role in the high alcohol drinking 

nature of genetically modified alcohol preferring P rats, according to some reports.6 Based on the 

biochemical similarities between the P rats, naïve MS rats, and MS rats the levels of GABAA α2 

expression were studied in MS rats and the CTL rats. A significantly higher expression of GABAA 

α2 receptors was observed in the MS rats in comparison to CTL rats, as shown in Figure 2-12. 

 
Figure 2-12. GABAA α2 protein concentration in CeA and mPFC of MS versus CTL rats. The levels of GABAA 

α2 expression were significantly higher in the CeA (A) and mPFC (B) of MS rats (N=6) compared to CTL rats 

(N=5 for mPFC, n=6 for CeA). *p ≤ 0.05 by ANOVA. 
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2.2.5.4. 3-PBC·HCl (1·HCl) Decreases the Impulsivity and Binge Alcohol Drinking in MS 

Rats 

 With the significant involvement and importance of GABAA α2 receptors in regulating 

alcohol drinking, impulsivity, addiction, and stress proposed. The GABA receptor ligand 3-

PBC·HCl was tested for its effect on alcohol drinking and impulsivity by microinjecting it directly 

into the CeA or mPFC of MS rats at 20 µg and 40 µg to determine its actions. The 1·HCl injected 

into both the CeA and mPFC decreased the alcohol responding and impulsivity as depicted, in 

Figure 2-13. The 40 µg of 1·HCl was known to reverse the alcohol drinking and impulsive nature 

in rodents and because of this only 40 µg was tested in mPFC. In both cases, the MS rats did not 

show any decreased responding to sucrose drinking. The 3-PBC·HCl did not have any aversive 

effects in the control rats; a necessary control experiment in studies on alcohol addiction to insure 

the test compound has no aversive or bad side effects that inhibits drinking overall. 
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Figure 2-13. Effects of 3-PBC·HCl in the CeA and mPFC on delay discounting, operant binge drinking, and 

sucrose drinking. (A) Both 20 and 40 µg doses of 3-PBC·HCl micro injected into the CeA, elevated adjusted 

amounts (decreased impulsivity) in MS rats (N=5/ dosage group) compared to vehicle treatment (N=5). (B) 

Both doses of 3-PBC·HCl also reduced operant responding of MS rats (N=5/dosage group) for alcohol 

compared to vehicle (N=5). (C) Neither dose of 3-PBC·HCl in the CeA (N=5/dosage group) altered the 

responding of MS rats for sucrose compared to vehicle (N=5). (D) The 40 µg dose of 3-PBC·HCl micro injected 

into the mPFC, elevated adjusted amount (decreased impulsivity) in MS rats (N=4) compared to vehicle 

treatment (N=4). (E) 40 µg of 3-PBC·HCl also reduced operant responding of MS rats (N=4) for alcohol 

compared to vehicle (N=4). (F) 3-PBC·HCl in the mPFC (N=5) did not alter the responding of MS rats for 

sucrose compared to vehicle (N=5). *p ≤ 0.05 by ANOVA. 



www.manaraa.com

 

58 

 

  The 3-PBC·HCl tested had demonstrated significant effects in reversing the alcohol 

drinking and impulsivity behavior in these MS rats. The 1·HCl along with CRF antagonist 

antalarmin provides a novel way to treat the stress induced alcohol drinking and impulsive life 

events hopefully in humans.  

2.2.6. Effect of PBC Isoforms (3-PBC·HCl, 3-ISOPBC·HCl, βCCt, and 3-cycloPBC·HCl) on 

Alcohol Drinking in P Rats and Effect of 3-cycloPBC·HCl and 3-ISOPBC·HCl in Maternally 

Deprived (MD) Rats 

 The 3-PBC (1·HCl) ligand studied in maternally separated (MS) rats had demonstrated 

effects in decreasing alcohol self-administration and impulsive behavior in these rats.6 The studies 

were further extended to determine the anti-alcohol properties of β-carboline antagonists 1·HCl, 

and βCCt, as well as 2·HCl and 20·HCl in alcohol preferring P rats. The 2·HCl and 20·HCl also 

were tested in MD rats in addition to P rats and 20·HCl was tested in male and female rats to 

determine its effects on different sexes.  

 The rats were trained under a fixed ratio schedule to lever press to get access to drink 

ethanol (EtOH) or sucrose (Figure 2-14 A and B). Initially, rats were trained to lever press for the 

available reinforcer (10% sucrose, W/V) under a fixed ratio (FR1) schedule for 5 to 10 days. The 

FR1 schedule was subsequently followed by an FR4 schedule for the sucrose drinking. The same 

fixed ratio was followed for ethanol drinking. Once the rats were stabilized in the operant chamber 

for ethanol drinking, the rats were allowed to lever press for 10 % EtOH. Rats received the gavage 

administration of the compound, and after 15 minutes rats were allowed to press the lever for two 

30 minute sessions to gain access to alcohol with a 45 minute break. The DIDMSA (drinking-in-

the-dark-multiple-scheduled- access) paradigm was followed for all the drinking pattern studies.  
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Figure 2-14. A, The rat is lever pressing for ethanol in operant chamber. B, The rat is drinking alcohol/sucrose 

from the dipper cup which is dispensed near the top of the chamber. 

 The previous studies done in P rats with these compounds reduced the alcohol drinking at 

the dose of 40 mg/kg.14 Now in addition to 40 mg/kg, the compounds were orally given at 5mg/kg, 

10 mg/kg, 20 mg/kg, 40 mg/kg and 75 mg/kg to determine the minimum effective dose and most 

active compound among all PBC isoforms.
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Figure 2-15: A, Effect of βCCt on binge drinking in P rats (N = 6 male rats per group, except for 15 mg/kg where N = 4, N = 8 for vehicle) at 5 mg/kg, 15 

mg/kg, 40 mg/kg, and 75 mg/kg. B, Effect of 3-ISOPBC·HCl on binge drinking in P rats (N = 6 male rats per group except for 5 mg/kg where N = 4, N = 

8 for vehicle) at 5 mg/kg, 15 mg/kg, 40 mg/kg, and 75 mg/kg. C, Effect of 3-PBC·HCl on binge drinking in P rats (N = 6 male rats per group N = 6 for 

vehicle) at 5 mg/kg, 15 mg/kg, 40 mg/kg, and 75 mg/kg. D, Effect of 3-cycloPBC·HCl on binge drinking in P rats (N = 8 male rats per group, N = 11 for 

vehicle) at 5 mg/kg, 15 mg/kg, 20 mg/kg, and 40 mg/kg. N = 11 for no treatment.
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 All PBC isoforms were given to P rats orally at a dose of 5 mg/kg, 15 mg/kg, 40 mg/kg 

and 75 mg/kg except 20·HCl which was tested at a maximum dose of 40 mg/kg. The effect of the 

compounds on the lever pressings for alcohol for all the compounds administered at different doses 

are illustrated in Figure 2-15. The α1 antagonist βCCt reduced the number of lever pressings for 

alcohol at the initial dose of 5 mg/kg and at 15 mg/kg but had shown a significant reduction at 40 

mg/kg. The decrease in lever pressing response at the 75mg/kg dose of βCCt was less but still 

significant, as shown in Figure 2-15A. The 3-ISOPBC (2·HCl) ligand decreased alcohol 

responding at all dosages, and the response was a sequential decrease from 5 mg/kg to 75 mg/kg 

(Figure 2-15B). Similar to βCCt and 2·HCl the number of lever pressings to gain access to alcohol 

intake was reduced in the case of 3-PBC·HCl (Figure 2-15C). However, the maximum decrease 

in responding was observed at 15 mg/kg, and there was a slight increase in the lever pressing at 40 

mg/kg and 75 mg/kg with 1·HCl. Again, the reduction in lever pressings was significant. The 

20·HCl was given to rats at the same concentrations as the other three PBC Isoforms except the 

75 mg/kg dosage. In the case of 3-cycloPBC (20·HCl), the maximum decrease in the alcohol 

responding was observed at the dose of 40 mg/kg, consequently, a higher dose was not tested 

(Figure 2-15 D). Although the four different isoforms of PBC demonstrated a prominent reduction 

in responding for the alcohol intake, the 20·HCl exhibited a significant decrease at the 40 mg/kg 

and 1·HCl at 15 mg/kg, but the increase in the response was observed at higher doses with 1·HCl 

but even then it was a significant decrease in lever pressing for alcohol. The 20·HCl and 2·HCl 

were further evaluated for their effectiveness in reducing binge drinking in maternally deprived 

(MD) rats. For the initial studies 20·HCl was tested for two 30 minute sessions whereas the 2·HCl 

was evaluated for two hours. 
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Figure 2-16: A, Effect of 3-cycloPBC·HCL on binge drinking in MD rats (N = 9 male rats per group, N = 8 for vehicle) at 5 mg/kg and 15 mg/kg. B, Effect 

of 3-ISOPBC·HCl on binge drinking in MD rats (N = 11 male rats per group, N = 11 for vehicle) at 20 mg/kg and 40 mg/kg. C, Effect of 3-ISOPBC·HCl 

on sucrose drinking in MD rats (N = 11 male rats per group, N = 11 for vehicle) at 20 mg/kg and 40 mg/kg. 
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 The effect of 3-cycloPBC·HCl (20·HCl) on the operant responding of lever pressing was 

shown in Figure 2-16A. There was a significant decrease in the lever press responses for alcohol 

at 5 mg/kg of 20·HCl, as compared to vehicle, and it was even less when the 10 mg/kg dose was 

used (Figure 2-16A). The dose of 20·HCl that produced a maximum effect in the MD rats was 

much more potent when compared to the 40 mg/kg dose in P rats. The 2·HCl given at 20 mg/kg 

and 40 mg/kg also reduced the alcohol responding compared to vehicle in MD rats (Figure 2-16B) 

but these doses are higher than the 20·HCl but still effective. None of the MD rats experienced 

any decrease in response to sucrose consumption (Figure 2-16C) when given 2·HCl or 20·HCl. 

Gratifyingly, the two ligands 2·HCl or 20·HCl had no overt behavioral aversive effects.         

 Because the 20·HCl had shown a significant effect in reducing the operant responding for 

alcohol in both P rats and MD rats, it was tested in both female and male P rats (5 mg/kg, 10 mg/kg, 

20 mg/kg, and 40 mg/kg) and MD rats (5 mg/kg and 10 mg/kg), as depicted in Figure 2-17. This 

was to examine sex differences in the reduction of alcohol self-administration in these rodent 

models. In male and female P rats the decrease in lever presses was observed at 5 mg/kg as 

compared to the vehicle treated rats. However, the decrease was more prominent in female P rats 

at 20 mg/kg and 40 mg/kg. In male P rats the effect was prominent at 40 mg/kg, and the 20 mg/kg 

drug administration did not cause any decrease in lever pressings in contrast to the 20 mg/kg dose 

in female P rats (Figure 2-17 A and B). 
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Figure 2-17: A, Effect of 3-cycloPBC·HCl on binge drinking in female P rats (N = 4 female rats per group, N = 

5 female for vehicle) at 5 mg/kg, 10 mg/kg, 20 mg/kg and 40 mg/kg. B, Effect of 3-cycloPBC·HCl on binge 

drinking in male P rats (N = 4 male rats per group, N = 6 male for vehicle) at 5 mg/kg, 10 mg/kg, 20 mg/kg and 

40 mg/kg. C, Effect of 3-cycloPBC·HCl on binge drinking in female MD rats (N = 4 female rats per group, N = 

4 before day 1 of gavage) at 5 mg/kg and 10 mg/kg. D, Effect of 3-cycloPBC·HCl on binge drinking in male MD 

rats (N = 5 male rats per group, N = 5 m before day 1 of gavage) at 5 mg/kg and 10 mg/kg. 

 The 20·HCl given orally to MD rats at 5 mg/kg and 10 mg/kg in both female and male MD 

rats had a profound effect on alcohol self-administration at these doses. In female MD rats, the 

reduction in alcohol responding was observed at both doses and the effect was similar with the 5 

mg/kg and 10 mg/kg dose (Figure 2-17C). In male MD rats, the decrease in the responding was 

observed at the higher dose (10 mg/kg), as compared to administration of the 5 mg/kg of 20·HCl 

(Figure 2-17D). Clearly the effect of the 20·HCl at 5 mg/kg exerted a more potent effect in MD 
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female rats, as compared to the corresponding male rats. None of the rats showed any decrease in 

responding to non-alcohol drinks such as sucrose which implies the PBC isoforms are selectively 

acting against alcohol drinking behaviors with no adversive effects. The 20·HCl is clearly more 

potent in female rats against alcohol drinking behaviors than their male counterparts. This is 

significant in regard to sex difference. 

2.2.7. The Effect of βCCt, 3-PBC·HCl (1·HCl), and 3-ISOPBC·HCl (2·HCl) on the 

Spontaneous Locomotor Activity (SLA) and Diazepam Induced Sedation in Mice 

 It was demonstrated earlier that alcohol potentiates GABAergic neurotransmission at least 

in part via action at α1 subunit-containing GABAA receptors,4 and also that an α1-preferring 

antagonist such as 3-PBC·HCl (1·HCl)13 might exhibit a beneficial effect to reduce alcohol 

drinking.21 Recently, an isomer of 3-PBC·HCl and a putative α1-preferring antagonist 3-

ISOPBC·HCl was synthesized and tested.7 In the behavioral part of the present study, 2·HCl and 

1·HCl were tested to answer the question whether both affect spontaneous locomotor activity and 

the diazepam-induced sedation or antagonize it in mice. It was known the α1 preferring antagonist 

βCCt (anti-alcohol ligand) was a potent antagonist of the sedative/ataxic effects of diazepam in 

rhesus monkeys and rodents. Moreover, 1·HCl has exerted the same effects, albeit weaker. Since 

the sedative effect of diazepam and other benzodiazepines is mediated mainly by α1 subunit-

containing GABAA receptors, a reversible effect of 2·HCl or 1·HCl on diazepam-induced sedation 

would further support their α1-preferring antagonistic properties in in-vivo rather than just in-vitro, 

and encourage their examination in the context of alcohol seeking behavior in other models 

directed towards human alcoholics. 

 The study on this subject by Savic et al. in a male C57BL/6 strain of mice included two 

experiments – the first investigation includes the effects of both 2·HCl and 1·HCl at a dose of 10 
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mg/kg on spontaneous locomotor activity and the diazepam-induced sedation in mice, together 

with the use of the positive control – a widely studied α1 GABAA antagonist βCCt designed in 

Milwaukee. In the second experiment, the same study was carried out, but with the 2·HCl and 

1·HCl dosed at 30 mg/kg. The results presented here indicated that the application of diazepam at 

a dose of 2 mg/kg induced a reliable sedation in mice in both experiments. Importantly, the potent 

α1 preferring antagonist (positive control), βCCt managed to antagonize the sedative effect of 

diazepam in the first 60 minutes of tracking, while its effect did not reach significance during the 

complete recording period of 90 min; such subtle differences may be related to the expected shorter 

elimination half-life of βCCt when compared to diazepam. This drug is known for involvement of 

active metabolites (nordiazepam) which contributes to the overall behavioral half-life of activity. 

The 3-ISOPBC·HCl, dosed at both, 10 and 30 mg/kg, had no significant effect on spontaneous 

locomotor activity on its own but failed to antagonize the sedative effects of diazepam. This finding 

suggests that 2·HCl is not an antagonist at α1-containing GABAA receptors either from lack of 

potency or binding affinity but could be at a higher dose. Unexpectedly, the same result was 

determined for 1·HCl. This result is in contradiction with others studies which showed 3-PBC·HCl 

(1·HCl) did antagonize some of the properties of diazepam. This result is likely due to animal 

strain or vehicle differences. 

 Analysis of the data of this study demonstrated that both 2·HCl and its more-studied isomer 

1·HCl were devoid of α1 antagonistic properties in the spontaneous locomotor activity assay in 

these mice in the Dr. Savic laboratory. Since this latter observation with 1·HCl is in contrast to 

much literature which indicated 1·HCl was antagonist at α1 in-vivo. These properties may be 

responsible for the beneficial effects on alcohol drinking behavior. Further work in this area is 

necessary to unravel these contrasting reports. 
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 In the first SLA experiment (Figure 2-18), analysis by two-way ANOVA revealed a 

significant effect of factor agonist, except a trend for the parameter total distance traveled when 

one level of the factor antagonist was 3-PBC·HCl (Table 2-6). When it comes to the factor 

antagonist, a significant influence was demonstrated for βCCt and the parameter total time 

immobile at 0–60 min, while for the same parameter at 0–90 min and total distance traveled at 0–

60 min a statistical trend was observed. Interaction as a factor was not significant in any case. Post 

hoc SNK tests revealed significant results after two-way ANOVA and are listed in Table 2-7. 

 In the second SLA experiment (Figure 2-19), one-way ANOVA demonstrated a highly 

significant influence of treatment (Table 2-8) by 3-PBC·HCl and 3-ISOPBC·HCl. Significant post 

hoc SNK comparisons, listed in Table 2-6, revealed that neither 3-PBC·HCl nor 3-ISOPBC·HCl 

was able to prevent the sedative action of DZP (Diazepam) even when dosed at 30 mg/kg. 

 

Figure 2-18. The effects of diazepam (2 mg/kg), βCCt (10 mg/kg), 3-PBC·HCl (10 mg/kg) and 3-ISOPBC·HCl 

(10 mg/kg) in presented combinations on total distance travelled (left scale, triangles) and total time immobile 

(right scale, circles) in 0–90 (black symbols) and 0–60 (white symbols) min time periods in mice in SLA. All 

results are presented as means ± SEM. A number of animals per treatment (for SOL in combination with SOL 

through DZP in combination with ISOPBC, respectively) was 8, 6, 6, 6, 6, 7, 7 and 6. The significances values 

are presented in Table 2-7. 
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Table 2-6. The significant post hoc comparisons (Student-Newman-Keuls (SNK) test) after the performance of 

one-way ANOVAs. The influence of 3-ISOPBC·HCl and 3-PBC·HCL (30 mg/kg, respectively) on total distance 

traveled (m) and total time immobile (min) in SLA was assessed in the 0–90 and 0–60 min period in a partial 

factorial design. 

Groups 
Behav. 

param. 

Tracking 

period 

Post hoc comparison  

(SNK test) 
Significance 

SOL + SOL 

DZP + SOL 

DZP + PBC 

DZP + 

ISOPBC 

T
o
ta

l 
d
is

ta
n
ce

 t
ra

v
el

le
d
 (

m
) 

0–90 

min. 

SOL + SOL vs. DZP + SOL p < 0.001 

SOL + SOL vs. DZP + PBC p = 0.002 

SOL + SOL vs. DZP + 

ISOPBC 
p < 0.001 

0–60 

min. 

SOL + SOL vs. DZP + SOL p < 0.001 

SOL + SOL vs. DZP + PBC p < 0.001 

SOL + SOL vs. DZP + 

ISOPBC 
p < 0.001 

T
o
ta

l 
ti

m
e 

im
m

o
b
il

e 
 

(m
in

.)
 

0–90 

min. 

SOL + SOL vs. DZP + SOL p < 0.001 

SOL + SOL vs. DZP + PBC p < 0.001 

SOL + SOL vs. DZP + 

ISOPBC 
p < 0.001 

0–60 

min. 

SOL + SOL vs. DZP + SOL p < 0.001 

SOL + SOL vs. DZP + PBC p < 0.001 

SOL + SOL vs. DZP + 

ISOPBC 
p < 0.001 
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Table 2-7. The results of the two-way ANOVAs. The influence of 3-ISOPBC·HCl and 3-PBC·HCl (10 mg/kg 

respectively) on the total distance travelled (m) and total time immobile (min) in spontaneous locomotor activity 

assay was assessed in the 0-90 and 0-60 min time period together with the use of the positive control (βCCt) in 

a full factorial design (behav. param. –behavioral parameter). 

Behav.  

param. 

Tracking 

period 

Factors in the 

two-way ANOVA  

F value and 

significance for 

factor Agonist 

F value and 

significance for 

factor 

Antagonist 

F value and 

significance for 

factor 

Interaction 

T
o
ta

l 
d
is

ta
n
ce

 t
ra

v
el

ed
 (

m
) 

0–90 

min 

Agonist (SOL and DZP) vs. 

Antagonist (SOL and βCCt) 

F(1,23) = 5.255 

p = 0.031 

F(1,23) = 2.003 

p = 0.170 

F(1,23) = 0.584  

p = 0.453 

Agonist (SOL and DZP) vs. 

Antagonist (SOL and PBC) 

F(1,23) = 3.361 

p = 0.080 

F(1,23) = 0.289 

p = 0.596 

F(1,23) = 0.793 

p = 0.382 

Agonist (SOL and DZP) vs. 

Antagonist (SOL and 

ISOPBC) 

F(1,23) = 12.584 

p = 0.002 

F(1,23) = 0.073 

p =0.790 

F(1,23) = 0.120 

p = 0.733 

0–60 

min 

Agonist (SOL and DZP) vs. 

Antagonist (SOL and βCCt) 

F(1,23) = 4.622 

p = 0.042 

F(1,23) = 4.199 

p = 0.052 

F(1,23) = 1.643 

p = 0.213 

Agonist (SOL and DZP) vs. 

Antagonist (SOL and PBC) 

F(1,23) = 3.344 

p = 0.080 

F(1,23) = 1.389 

p = 0.251 

F(1,23) = 1.071 

p = 0.312 

Agonist (SOL and DZP) vs. 

Antagonist (SOL and 

ISOPBC) 

F(1,23) = 16.539 

p < 0.001 

F(1,23) = 0.475 

p = 0.498 

F(1,23) = 0.154 

p = 0.699 

T
o
ta

l 
ti

m
e 

im
m

o
b
il

e 
(m

in
.)

 

0–90 

min 

Agonist (SOL and DZP) vs. 

Antagonist (SOL and βCCt) 

F(1,23) = 21.510 

p < 0.001 

F(1,23) = 3.233 

p = 0.085 

F(1,23) = 0.215 

p = 0.647 

Agonist (SOL and DZP) vs. 

Antagonist (SOL and PBC) 

F(1,23) = 18.410 

p < 0.001 

F(1,23) = 0.193 

p = 0.665 

F(1,23) = 0.766 

p = 0.391 

Agonist (SOL and DZP) vs. 

Antagonist (SOL and 

ISOPBC) 

F(1,23) = 33.494 

p < 0.001  

F(1,23) = 0.366 

p = 0.551 

F(1,23) = 0.685 

p = 0.417 

0–60 

min 

Agonist (SOL and DZP) vs. 

Antagonist (SOL and βCCt) 

F(1,23) = 21.249 

P < 0.001  

F(1,23) = 5.618 

p = 0.027 

F(1,23) = 0.870  

p = 0.361 

Agonist (SOL and DZP) vs. 

Antagonist (SOL and PBC) 

F(1,23) = 19.723 

P < 0.001  

F(1,23) = 1.256 

p = 0.274 

F(1,23) = 0.911 

p = 0.350 

Agonist (SOL and DZP) vs. 

Antagonist (SOL and 

ISOPBC) 

F(1,23) = 43.926 

p <0.001 

F(1,23) = 1.205 

p = 0.284 

F(1,23) = 1.016 

p = 0.324 

 



www.manaraa.com

 

70 

 

 

Figure 2-19. The effects of diazepam (2 mg/kg) in combination with SOL, 3-PBC·HCl (30 mg/kg) and 3-

ISOPBC·HCl (30 mg/kg), respectively, on total distance travelled (a) and total time immobile (b) in 0–90 and 

0–60 min time periods in mice in SLA. All results are presented as means ± SEM. 
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Table 2-8. The results of one-way ANOVAs. The influence of 3-ISOPBC·HCl and 3-PBC·HCl (30 mg/kg, 

respectively) on total distance traveled (m) and total time immobile (min) in SLA was assessed in the 0–90 and 

0–60 min period in a partial factorial design. 

Groups 
Behavioral 

parameter 

Tracking 

period 

F value and 

significance 

SOL + SOL 

DZP + SOL 

DZP + PBC 

DZP + 

ISOPBC 

Total distance 

travelled (m) 

0–90 min 

F(3,20) = 

14.140 

p < 0.001 

0–60 min 

F(3,20) = 

16.854 

p < 0.001 

Total time immobile  

(min.) 

0–90 min 

F(3,20) = 

25.106 

p < 0.001 

0–60 min 

F(3,20) = 

28.091 

p < 0.001 
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2.2.8. Determination of CNS (Central Nervous System) Sensorimotor Effects using Rotarod 

Studies49 

  Rotarod studies are conducted to examine the possible adverse central nervous system 

(CNS) sensorimotor effects that include ataxia, sedation, and loss of righting reflex (LORR) due 

to β-carbolines that behave as Bz/GABA(A)ergic positive allosteric modulators (PAM); as 

agonists. The compounds were administered to female Swiss Webster mice at 40 mg/kg by oral 

gavage except for 2·HCl, which was tested in male Balb/c mice with intraperitoneal (ip) 

administration. The sensorimotor test was carried out after 10, 30, and 60 minutes (5 min for 3-

2·HCl instead of 10 min). Diazepam was used as a positive control at 5 mg/kg and vehicle was 

given to a group of mice to serve as a negative control group. The compounds do not show any 

adverse effects, as shown in Figure 2-20. 
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Figure 2-20. Effect of compounds on sensorimotor coordination. Swiss Webster mice (Balb/c in case of 3-

ISOPBC·HCl) were tested on the rotarod at 15 rpm for 3 min at 10, (5 min for 3-ISOPBC·HCl) 30, and 60 min, 

respectively following compound exposure. Mice (N=10) received single oral gavage administration 

(intraperitoneal for 3-ISOPBC·HCl) of test compound at (40 mg/kg), diazepam (5 mg/kg), or vehicle (50%PBS, 

40% propylene glycol, 10% DMSO). The time of fall was recorded if it occurred before 3 min. Data are 

expressed as mean ± SEM (N=10). 
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 There was no sedation, ataxia or LORR activity observed with these compounds, except 

with 2·HCl which, exhibited only very minor sedation at the 10 minute time point which was also 

within experimental error. The βCCt, 1·HCl and WYS8 compounds do not show any significant 

adverse CNS activity. The 2·HCl tested ip does not cause any unwanted effects, and there were 

also no overt CNS effects observed. The rotarod studies clearly indicated that these compounds 

are safe in rodents even at the concentrations up to 40 mg/kg administration orally. This is 

necessary to employ these β-carbolines for further studies of alcohol self-administration in 

nonhuman primates. 

2.2.9. In-vitro Metabolic Stability Studies of β-carbolines on Human Liver Microsomes 

(HLM) and Mouse Liver Microsomes (MLM)10 

 Drug metabolism is a process of converting hydrophobic xenobiotic agents into more water 

soluble species by biochemical modification, which facilitates the elimination of drugs from the 

body primarily by the kidney or bile ducts. Metabolic stability refers to the susceptibility of drugs 

to biotransformational enzymes such as cytochrome P450, esterases, and hydroxylases which are 

abundant in the liver.50 Microsomes and S9 fractions are subcellular fractions of liver tissue. 

Microsomes are vesicles derived from the endoplasmic reticulum which contains the CYP 450 

enzymes (hydrolases, esterase etc.) responsible for phase I biotransformation reactions.51 The in-

vitro metabolic stability assay was carried out in the presence of microsomes derived from human 

and mouse species.52 The stability data was determined at the end of one hour and the half-life 

values are also presented in Table 2-9. 
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Table 2-9. The in-vitro metabolic stability studies with % remaining at the end of 1 hour  

aHLM – Human Liver Microsomes, bMLM – Mouse Liver Microsomes  

 On the human liver microsome assay, the stability was in the order of 3-PBC·HCl ~ 3-

ISOPBC·HCl < 3-cycloPBC·HCl < βCCT < WYS8. The 1·HCl and 2·HCl degraded to less than 

20% in an hour, whereas the 20·HCl contained nearly 50% remaining after one hour which is a 

significant difference when compared to the active 1·HCl and 2·HCl. The longer stability of the 

3-cycloPBC·HCl analog (20·HCl) was presumably due to the cyclopropyl group, the substitution 

of which slowed metabolism. The βCCt with the t-butyl ester and WYS8 ligands demonstrated 

better stability and a half-life of more than one hour. The acetylene group present in the WYS8 

Compound Half-life 

(min) 

(HLM) 

% left after 

1 hr. 

(HLM)a 

Half-life 

(min) 

(MLM)b 

% left after 

1 hr. 

(MLM) 

3-PBC·HCl 19.95 ± 0.55 13.37 ± 0.17 

Compound 

not detected 

after 20 

minutes 

Compound 

not detected 

after 20 

minutes 

3-ISOPBC·HCl 17.41 ± 0.82 11.32 ± 0.31 

Compound 

not detected 

after 30 

minutes 

Compound 

not detected 

after 30 

minutes 

3-CycloPBC·HCl 46.6 ± 1.9 40.67 ± 0.23 

Compound 

not detected 

after 20 

minutes 

Compound 

not detected 

after 20 

minutes 

βCCt 141.5 ± 8.8 73 ± 0.18 

Compound 

not detected 

after 20 

minutes 

Compound 

not detected 

after 20 

minutes 

WYS8 677 ± 148 93.56 ± 0.16 134.2 ± 7.6 75.11 ± 0.18 
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molecule may have contributed to the higher stability by retarding aromatic hydroxylation in ring 

A and the branched substituent also had an influence on the increase of the stability of WYS8 and 

βCCt at C-3. In mouse liver microsomes all of the compounds degraded very rapidly. In less than 

20-30 minutes β-carbolines were under the limit of quantification on the analytical mass 

spectrometer (Shimadzu LCMS -8040). Consequently, the half-life and percent remaining are not 

calculated for mouse (MLM) assays. It is well known that mouse liver and rat livers are 

upregulated with detoxification enzymes compared to humans and primates.52 Stability of 1 hour 

in the rat means approximately four hours in a dog and eight hours in a nonhuman primate. 

The metabolic stability samples will be further investigated for metabolic profiling to extend the 

studies to pre-clinical models such as in baboons, dogs, and rabbits to determine various 

metabolites formed, their stability and their safety. Reports in the literature which describe the 

metabolism of the natural β-carboline alkaloids harman and a norharman suggest that these 

alkaloids are efficiently oxidized to several ring hydroxylated and N-oxidation products.53 The 

metabolic enzymes CYP 450 1A2, 1A1 catalyzed the formation of 6-hydroxy β-carboline and CYP 

450 2D6, 2C19, and 2E1 also contributed to a minor extent (see Figure 2-21 for important details).  
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Figure 2-21. Oxidative metabolism of the β-carboline alkaloids norharman and harman by human cytochrome 

P450 enzymes and human liver microsomes.53  

 The other metabolite 3-hydroxy β-carboline was formed by enzymes CYP 450 1A1, and 

1A2 and the key β-carboline-N (2)-oxide was produced by P450 2E1. Since alkoxy groups in the 

3-alkoxy β-carbolines increase the electron density of the β-carboline N-atoms, pathway P450 2E1 

to an N-oxide may be involved here.  These oxidations are the major route of detoxification for β-

carbolines with the involvement of P450 1A1, 1A2, 2D6, 2C19 and 2E1 cytochrome enzymes. 

The rapid elimination and detoxification reactions of β-carbolines indicate that these act as a good 

substrates for metabolic enzymes. The mechanism of metabolite formation for β-carbolines 

compounds is anticipated to be similar to naturally occurring harman and norharman and will be 

R: H; norharman 

R: CH3; harman 



www.manaraa.com

 

77 

 

studied. This is much of the reason one is anxious to see a study in nonhuman primates with 3-

cycloPBC·HCl (20·HCl). 

2.2.10. Evaluation of Cytotoxicity of β-Carbolines in HEK 293 and HEPG2 Cells10 

 The PBC isoforms have been characterized for the determination of cytotoxicity in two 

different cell lines HEK 293 (Human Embryonic Kidney) and HEPG2 (Human Liver 

Hepatocellular Carcinoma). The cells are incubated with the compounds and the cell viability was 

measured with the Cell Titer-GLOTM (contains luciferase, Mg, and luciferin) that determines the 

amount of ATP produced from the living cells. The control reference was the fluorescence of the 

living cells. The cytotoxicity was the loss of fluorescence because dead cells do not produce ATP. 

The difference was easy to measure. The reaction that occurs between the Cell Titer-GLOTM assay 

reagent and ATP from living cells is represented in Scheme 2-1. The LD50 (Lethal Dose) was 

calculated and compared between the different compounds with the two cell lines and is presented 

in Figure 2-22.  

Scheme 2-1: The bioluminescence reaction between the cells and Cell Titer-GLOTM 
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Figure 2-22: The in-vitro cytotoxicity of β-carboline analogs on HEK 293 and HEPG2 cell lines with LD50 values 

which indicates 3-cycloPBC·HCl (20·HCl) is the safest in these assays. 

HEK293 cell lines:  Analysis of the LD50
 values of the above HEK293 viability graphs indicate 

that the hydrochloride salts of β-carbolines showed almost equal cell viability. The 3-ISOPBC·HCl 

showed better viability (LD50 = 108.5 ± 9.2 µM) among three hydrochloride compounds except 

within experimental error, the 3-cycloPBC·HCl ligand was just as safe (93 ± 7 µM). The βCCt and 

WYS8 were safe and non-toxic up to 50 µM and exhibited toxicity when the concentration was 

greater than 50 µM. However, an LD50 of 50 micromolar is relatively safe because the 

concentration in the clinic would not be greater than nanomolar. The other analogs were safe as 

well. 

HEPG2 cell lines:   Examination of the LD50
 values from the above HEPG2 viability graph 

indicated that, 3-cycloPBC·HCl was non-toxic (LD50 = 169.6 ± 7.4 µM) compared to all other β-

carbolines tested. The 3-PBC·HCl and 3-ISOPBC·HCl demonstrated almost equal viability in 

HEPG2 cell lines. The βCCt and WYS8 were safe and non-toxic at lower concentration (LD50 = 



www.manaraa.com

 

79 

 

36.2 ± 1.5 µM for βCCt; LD50 = 41.3 ± 4.3 µM for WYS8) and exhibited toxicity when the 

concentration increased.  

 In conclusion, overall 3-cycloPBC·HCl (20·HCl) is the safest in these two assays as 

compared to 3-ISOPBC·HCl, 3-PBC·HCl, βCCt or WYS8 in both cell lines (HEK293 and 

HEPG2). However, the cytotoxicity at 30 µM for βCCt and WYS8 is an order of magnitude, at 

least, higher than pharmacologically relevant doses of these two agents. 

2.2.11. Psychoactive Drug Screening Program (PDSP): Analysis of 3-ISOPBC·HCl 

 3-ISOPBC·HCl was tested for binding to receptors according to references of the PDSP 

program54,55 at the University of North Carolina-Chapel Hill under the supervision of Dr. Bryan 

Roth. The results are presented below in the Table 2-10, where data represent mean percentage 

inhibition (with n = 4 determinations) for the ligand tested at the respective receptor subtypes. The 

data shown in the Table 2-10 are results from primary assays, with the exception of the numbers 

in parentheses, which are the Ki values in nM as determined from secondary assays. Significant 

inhibition was considered to be > 50% in the primary assay. In a primary assay if the binding value 

was  less than 50% this indicated no interaction occurred at 43 of these receptors and a secondary 

assay was not run (Ki). Where negative inhibition (-) was seen, it represented a stimulation of 

binding, as in some cases, compounds at high concentrations non-specifically increase binding. 

The concentration of the compound employed in the primary assays was 10 µM. 
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Table 2-10. Results of Psychoactive Drug Screening Program (PDSP) Analysis of 3-ISOPBC·HCl 

RECEPTOR 
a 3-ISOPBC (% inhibition) 

Adrenergic receptor alpha-1A 2.1 

Adrenergic receptor alpha-1B 27 

Adrenergic receptor alpha-1D 3.9 

Adrenergic receptor alpha-2A 30.4 

Adrenergic receptor alpha-2B -12.8 

Adrenergic receptor alpha-2C 13.9 

Adrenergic receptor beta-1 10.7 

Adrenergic receptor beta-2 3.8 

Adrenergic receptor beta-3 -3.9 

BZP Rat Brain Site 85.6(251.7)b 

Dopamine receptor D1 7.2 

Dopamine receptor D2 16.4 

Dopamine receptor D3 -4 

Dopamine receptor D4 0.7 

Dopamine receptor D5 -0.9 

Dopamine transporter DAT 24.8 

Opiate receptor DOR -4.6 

GABAA receptor -4.2 

Histamine receptor H1 3.7 
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Histamine receptor H2 34.6 

Histamine receptor H3 16 

Histamine receptor H4 2.9 

Opiate receptor KOR -2.6 

HERG binding 17.6 

Opiate receptor MOR 8.7 

Muscarinic receptor M1 -5 

Muscarinic receptor M2 20.2 

Muscarinic receptor M3 -4.4 

Muscarinic receptor M4 7.7 

Muscarinic receptor M5 23.8 

Serotonin receptor 5-HT1A 30.4 

Serotonin receptor 5-HT1B 22.4 

Serotonin receptor 5-HT1D 1.7 

Serotonin receptor 5-HT1E -9.6 

Serotonin receptor 5-HT2A 4.4 

Serotonin receptor 5-HT2B 63.9 (1,332.8 nM)b 

Serotonin receptor 5-HT2C 33.5 

Serotonin receptor 5-HT3 -4.5 

Serotonin receptor 5-HT5A 23.6 
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a Based on the primary (and secondary, if determined) binding assays, 3-ISOPBC·HCl did not significantly bind to 

the receptors shown here. b Secondary binding assay was performed, wherein the number in parentheses is the Ki value 

in nM. 

 In the primary receptor binding assay 3-ISOPBC did not bind to 43 receptors as mentioned; 

demonstrated < 50% binding at 10 µM.  Only 3-ISOPBC·HCl  demonstrated > 50% binding at 10 

µM in the primary receptor binding assays at the serotonin receptor (5-HT2B), BZP rat brain site, 

and NET transporter, therefore, secondary assay binding data was determined only for these three 

receptors. The Ki for binding of 3-ISOPBC·HCl at the serotonin receptor (5-HT2B), the BZP rat 

brain site, and the NET transporter was found to be 1,332.8 nM, 251.7 nM, and 798.7 nM, 

respectively, which indicated that 3-ISOPBC·HCl does not significantly interact with these 

receptors.56 There is some interaction at the peripheral benzodiazepine receptor site but this is 

common for most Bz receptor ligands (Ki = 250 µM).                                                                                                                                                                   

2.3. CONCLUSION 

 β-carbolines consistently come under scrutiny as important pharmacological targets in 

natural products and synthetic chemistry.57 The β-carboline natural products exhibit a myriad of 

important biological activity throughout the ages from harman, norharman and others. The β-

carbolines here are based on the seminal studies of Braestrap whom incorrectly proposed the 

Serotonin receptor 5-HT6 -3.6 

Serotonin receptor 5-HT7 -7.2 

NET transporter 84.9 (798.7 nM)b 

SERT transporter -8.7 

Peripheral benzodiazepine receptor 40.2 

Sigma-1 receptor -13.6 

Sigma-2 receptor 31 
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structure of the endogenous ligand for the BzR as a dihydro β-carboline. The structure was 

incorrect and even the correct structure BCCE was not an endogenous ligand but was an artifact 

of the isolation process. This error was corrected by Richard Squires. However, Braestrap’s 

discovery was very important for it stimulated interest in β-carbolines as GABAA receptor ligands 

with many pharmacological applications. Among the various biological activities, these ligands 

are known to mediate anti-alcohol effects by acting as antagonists at α subunit subtype GABAA 

receptors in the central nervous system as proposed by June et al.13 several years ago for βCCt and 

3-PBC·HCl.58 Ligands such as BCCE and BCCM are important as negative modulators which 

enhance cognition; however the latter two β-carbolines are convulsant which limits their use. 

 The past evidence of the biological importance of βCCt and 1·HCl as potential treatments 

for alcohol abuse4,6,7,14,59 has prompted the design and synthesis of a new series of analogs to 

reduce the toxicity, extend duration of action and improve the in-vivo bioavailability.4,5 The 

efficacy and binding studies carried out on HEK 293T cells and oocytes revealed these molecules 

act as very week positive allosteric modulators with efficacy at α6β3δ and/or α6β3γ2 GABAA 

subunits but only at µM concentrations. The binding and efficacy studies indicated that 2·HCl 

bound tighter to the α1 subunit in contrast to α2 - α6 subtypes, analogous, to BCCt and 1·HCl 

which had antagonistic activity at the α1β3γ2 GABAA receptor subunits. However, Luddens, 

Gondre-Lewis reported also an interaction at the α2 subtypes but it was not antagonized by 

flumazenil, consequently this action at α2 subunits could not be due to the α2β3γ2 studied here. 

The biological significance of these β-carbolines (2·HCl, 20·HCl) was confirmed by reduction of 

binge drinking, high alcohol consumption, high alcohol self-administration in alcohol preferring 

P rats and maternally deprived (MD) rats. Whether this is an α1 or α2 effect or α1α2 mediated 

activity has not yet been shown.6 The 3-PBC·HCl was known to reduce the impulsive behavior 
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apart from high alcohol intake13 when given to rodent clinical models subjected to stress in early 

child hood6 and was the lead compound for the design and synthesis of 2·HCl and 20·HCl. 

 The role of α1 GABAA receptors involved in high alcohol consumption and substance use 

disorders and antagonistic properties of βCCt and 3-PBC·HCl in these disease models were 

evaluated in baboons by Elise Weerts et al.7 Previous studies4 in rhesus monkeys with these two 

ligands demonstrated they were antagonists of the sedation and ataxia exerted by diazepam and 

alprazolam; hence their designation as α1 antagonists.4,13 However, renewed interest in them stems 

from the use of the related β-carboline (3-ISOPBC·HCl), which was very potent in the reduction 

of alcohol self-administration and craving in baboons (Weerts et al.)7; a very exciting result. Before 

the study in baboons these β-carboline isomers (1·HCl, 2·HCl, and 20·HCl) were subjected to 

studies on the rotarod to determine if there was any adverse CNS sensorimotor effects. These β-

carbolines were devoid of sedation, ataxia, and LORR and have safety profiles that extended to 

high concentrations. Studies of metabolism on HLM and MLM show better stability on human 

liver microsmes and less stability in mouse liver microsomes. The stability of the 3-cyclopropoxy 

beta carboline was the best of the alkoxy beta carbolines studied, to date which is a result one was 

searching for. It was also nontoxic in cytotoxicity assays. Hence further in-vivo studies are in order. 

The stability studies are important to design ligands with enhanced bioavailability and duration of 

action which enhance pharmacological and pharmacokinetic availability of these as potential 

drugs. Although the data on the spontaneous locomotor activity and antagonism of diazepam-

induced sedation studies in-vivo by Dr. Savic in mice using 2·HCl and 1·HCl were contradictory 

to previous findings which involved α1 subtype selective ligands, this difference could be as 

simple as strain differences between mice and certainly differences in species (mice versus 

primates) or simply the vehicle employed as well as protocol. The fact remains that 3-PBC·HCl 
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was efficacious in retarding alcohol self-administration in alcohol P rats, HAD rats, MD rats and 

baboons. Moreover, 3-ISOPBC·HCl was even more active against alcohol self-administration in 

these models. Although the science would be clearer if one knew if this anti-alcohol effect (June 

et. al.,13 Gonde-Lewis et. al.,6 Weerts et. al.7) was mediated by α1β3γ2 subtypes alone, the fact 

remains BCCt, 3-PBC and 3-ISOPBC·HCl have been shown to reduce alcohol self-administration 

in many different animal models. These β-carbolines may have clinical potential in human 

alcoholics because Dr. Harry June showed5,13 that some of these beta carbolines reduced alcohol 

self-administration without the appearance of anhedonia nor depression, which occurs on occasion 

with naltrexone in some patients.  

 To get ligands with anti-alcohol effects that were more water soluble than the active anti-

alcohol compound βCCt, newer analogs were designed and synthesized. Based on Scott Harvey’s 

work, the 3-PBC·HCl (1·HCl) was active in rats, baboons and was more water soluble. However, 

using this approach 3-ISOPBC·HCl (2·HCl) was synthesized and it showed more potency in 

reduction of alcohol self-administration than 3-PBC·HCl leading on to the synthesis of 3-

cycloPBC·HCl which is active to date in MD rats, etc. The 3-cycloPBC·HCl (20·HCl) was not 

cytotoxic at all when compared to βCCt, 3-PBC·HCl, which showed toxicity but only at very 

higher concentrations. The stability on HLM and MLM revealed 20·HCl was longer lived than 3-

PBC·HCl and 3-ISOPBC·HCl. The 3-cycloPBC·HCl (20·HCl) had shown potential activity to 

reduce the alcohol self-administration in rat models by Gondre-Lewis et al., and studies are being 

carried out in other higher primate models. 

 Because of this activity the synthesis and scale up of the new β-carbolines analogs was 

designed and the number of steps was reduced from 6 to 2 and executed in excellent yields and on 

large scale (80 g).1 The biological studies conducted in non-human primate pre-clinical models 
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such as baboons required 80 -100 grams of ligand which can be done with ease with the new Pd 

chemistry.1 The activity in non-human primates does imply potential ligands to treat human 

alcoholics without diazepam (one of the agents used now) side effects. In summary, the β-

carbolines and their analogs have potential to be novel therapeutic agents to combat alcohol 

drinking and substance use disorders, a major problem increasing day by day in modern society 

(CNN and FOX NEWS channels!). 

2.4. EXPERIMENTAL METHODS 

2.4.1. Determination of Efficacy Studies in HEK 293T Cells - General Methods for Electro-

physiological Recordings from Transiently Transfected HEK-293T Cells 

 HEK-293T cells were transiently transfected using calcium phosphate precipitation. Plasmids 

encoding mammalian GABAA receptor subunit cDNAs were added to the cells in 1:1:1 ratios (:β:γ 

or ) of 2 g each. To allow identification of positively transfected cells, the plasmid encoding the 

pHook antibody was also included. The selection procedure for pHook expression was performed 18-

52 hrs later.  The cells were passaged and mixed for 30-60 min with magnetic beads coated with 

antigen for the pHook antibody (approximately 6 x 105 beads).60  The selected cells were plated onto 

collagen-coated coverslips and used for recordings the next day. 

 Cells were patch-clamped at -50 mV in the whole-cell recording configuration.  The bath 

solution consisted of (in mM): 142 NaCl, 8.1 KCl, 6 MgCl2, 1 CaCl2, and 10 HEPES (4-(2-

hydroxyethyl)-1-piperazineethanesulfonic acid) with pH = 7.4 and osmolarity adjusted to 295-305 

mOsm. The recording electrodes were filled with a solution of (in mM); 153 KCl, 1 MgCl2, 5 K-

EGTA (ethylene glycol-bis (2-aminoethyl ether N,N,NN-tetraacetate), and 10 HEPES with pH = 

7.4 and osmolarity adjusted to 295-305 mOsm.  GABA was diluted into the bath solution from 

freshly made or frozen stocks in water. Compounds were dissolved in DMSO and diluted into the 
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bath solution with the highest DMSO level applied to cells of 0.01%.  Patch pipettes were pulled 

from borosilicate glass (World Precision Instruments, Sarasota, FL) on a two-stage puller 

(Narishige, Japan) to a resistance of 5-10 M.  Solutions containing GABA or GABA plus 

compounds were applied to cells for 5 sec using a 3-barrelled solution delivery device controlled 

by a computer-driven stepper motor (SF-77B, Harvard Apparatus, Holliston, MA, open tip 

exchange time of <50 msec ).  There was a continuous flow of external solution through the 

chamber.  Currents were recorded with an Axon 200B (Foster City, CA) patch clamp amplifier.  

2.4.2. Efficacy Studies in Xenopus laevis Frog Oocytes 

Two electrode voltage clamp 

 In-vitro transcription of mRNA was based on the cDNA expression vectors encoding for 

all indicated GABAA (rat) receptor subunits.61 After linearizing the cDNA vectors with appropriate 

restriction endonucleases, capped transcripts were produced using the mMESSAGE 

mMACHINE T7 transcription kit (Ambion, TX). The capped transcripts were polyadenylated 

using yeast poly (A) polymerase (USB, OH) and were diluted and stored in diethylpyrocarbonate-

treated water at -70°C. 

 The methods for isolating, culturing, injecting and defolliculating of oocytes were identical 

with those described by E. Sigel62 and were described elsewhere.63 Mature female Xenopus laevis 

(Nasco, WI) were anesthetized in a bath of ice-cold 0.17 % Tricaine (Ethyl-m-aminobenzoate, 

Sigma, MO) before decapitation and removal of the frog’s ovary. Stage 5 to 6 oocytes with the 

follicle cell layer around them were singled out of the ovary using a platinum wire loop. Oocytes 

were stored and incubated at 18°C in modified Barths’ Medium (88mM NaCl, 10mM HEPES-

NaOH (pH 7.4), 2.4 mM NaHCO3, 1mM KCl, 0.82 mM MgSO4, 0.41 mM CaCl2, 0.34 mM 

Ca(NO3)2) that was supplemented with 100 U/ml penicillin and 100 µg/ml streptomycin. Oocytes 
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with follicle cell layer still around them were injected with an aqueous solution of mRNA. A total 

of 2.5ng of mRNA per oocyte was injected. The subunit ratio was 1:1:5 for α1β3γ2 receptors and 

1:1 for α1β3 receptors consisting of wild-type or mutated α1 subunit together with wild-type or 

mutated β3 subunit. After injection of mRNA, oocytes were incubated for at least 24 hours for 

α1β3 receptors and at least 36 hours for α1β3γ2 receptors before the enveloping follicle cell layers 

were removed. Collagenase-treatment (type IA, Sigma, MO) and mechanically defolliculating of 

the oocytes was followed, as described previously.63  

 For electrophysiological recordings, oocytes were placed on a nylon-grid in a bath of 

Xenopus Ringer solution (XR, containing 90 mM NaCl, 5 mM HEPES-NaOH (pH 7.4), 1 mM 

MgCl2, 1mM KCl and 1 mM CaCl2). The oocytes were constantly washed by a flow of 6 ml/min 

XR which could be switched to XR containing GABA and drugs. Drugs were diluted into XR from 

DMSO-solutions which resulted in a final concentration of 0.1 % DMSO perfusing the oocytes. 

Drugs were pre-applied for 30 sec before the addition of GABA, which was then co-applied with 

the drugs until a peak response was observed. Between two applications, oocytes were washed in 

XR for up to 15 min to ensure full recovery from desensitization. For current measurements, the 

oocytes were impaled with two microelectrodes (2-3 M) which were filled with 2 M KCl. 

Maximum currents measured in mRNA injected oocytes were in the microampere range for all 

subtypes of GABAA receptors. To test for modulation of GABA induced currents by drugs, a 

concentration of GABA that was titrated to trigger 3-6% of the respective maximum GABA-

elicited current of the individual oocyte (EC3-6), was applied to the cell with various concentrations 

of drugs, as described previously.61 Such low GABA concentrations are widely used in the 

literature. All recordings were performed at rt at a holding potential of -60mV using a Warner OC-

725C two-electrode voltage clamp (Warner Instrument, Hamden, CT) or a Dagan CA-1B Oocyte 
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Clamp or a Dagan TEV-200A two-electrode voltage clamp (Dagan Corporation, Minneapolis, 

MN). Data were digitized, recorded and measured using a Digidata 1322A data acquisition system 

(Axon Instruments, Union City, CA). Data were analyzed using GraphPad Prism. Data for dose 

response curves were fitted (where possible) to the equation Y=Bottom+(Top-

Bottom)/1+10(LogEC
50

-X)*nH, where EC50 is the concentration of the compound that increases the 

amplitude of the GABA-evoked current by 50%, and nH is the Hill coefficient. Data are given as 

mean ± S.E. from at least three oocytes and 2 oocyte batches. 

2.4.3. Effect of 3-Isopropoxy-β-carboline Hydrochloride (3-ISOPBC) on Alcohol Seeking and 

Self-Administration in Baboons 

Subjects 

 Eight singly-housed adult male baboons (Papio anubis; South-west Foundation for 

Biomedical Research, San Antonio, TX) weighing on average 28.1 kg (+ 4.2 SD) served as 

subjects. For the alcohol group (N = 5), the reinforcer delivered was 4% w/v alcohol. For the 

control group (N = 3), the reinforcer delivered was a preferred non-alcohol beverage (orange-

flavored, sugar-free Tang®), diluted to a concentration that functioned as a comparable rein-

forcer.64 All baboons had extensive histories of self-administration of either alcohol or the non-

alcoholic beverage under the chained schedule of reinforcement, as reported previously.7,19,64,65 

Each day the baboons were fed standard primate chow that was adjusted to maintain sufficient 

caloric intake for normal baboons of their size, age, and activity level (about 50–73 kcals/kg); fresh 

fruit or vegetables; and a children’s chewable multivitamin were also given. Water was available 

ad libitum except during sessions. The housing room was maintained under a 12–hour light/dark 

cycle (lights on at 6:00 AM). Facilities were kept in accordance with USDA and AAALAC 



www.manaraa.com

 

90 

 

standards. The protocol was approved by the JHU Animal Care and Use Committee and followed 

the Guide for the Care and Use of Laboratory Animals (2011).  

Apparatus 

 Sessions were conducted in modified primate cages as described in detail previously19,66 

and contained (1) a panel with three colored “cue” lights, (2) an intelligence panel with two 

vertically operated levers and two different colored “jewel” lights each located above one of the 

levers, (3) a “drinkometer” connected to a calibrated 1000-ml bottle, and (4) a speaker mounted 

above the cages for presentation of auditory stimuli (tones). A computer interfaced with Med 

Associates hardware and software remotely controlled the experimental conditions and data 

collection.  

Chained schedule of reinforcement procedure  

 Sessions were conducted seven days per week and began at the same time (8:30 AM) each 

day. The start of a session and the onset of Component 1 was signaled by a 3-s tone. During 

Component 1, a red cue light was illuminated, and all instrumental responses were recorded but 

had no programmed consequence. After 20 min, Component 1 ended and Component 2 was 

initiated. Component 2 was signaled by the illumination of a yellow cue light and consisted of two 

links. During the first link, the jewel light over the left lever was turned on, and a concurrent fixed 

interval 10 min, fixed time 20 min (FI 10-min FT 20-min) schedule was in effect. The first link 

ended either a) with the first response on the left lever after 10 min elapsed or b) automatically 

after 20 min, whichever occurred first. During the second link, the jewel light over the left lever 

flashed and a fixed-ratio (FR) 10 schedule was in effect on the left lever. Completion of the FR 

response requirement ended Component 2; the yellow cue light and the jewel light were turned 

off, and Component 3 was initiated. If the FR 10 requirement was not completed within 90 min, 
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the session terminated with-out transitioning to Component 3 (i.e., no access to alcohol or the non-

alcoholic beverage for the day). Component 3 was signaled by the illumination of the blue cue 

light. A blue jewel light over the right lever was also illuminated, and the opportunity to self-

administer alcohol or the non-alcoholic beverage (depending on group assignment) was available 

under an FR 10 schedule on the right lever. Completion of each FR and subsequent contact with 

the drinkometer spout delivered fluid for the duration of spout contact or for a programmed 

duration (5 s), whichever came first and is defined as a single drink. Component 3 and the session 

ended after 120 min. 

Drugs  

 All solutions for oral consumption were mixed using reverse osmosis (RO) purified 

drinking water. Ethyl alcohol (190 Proof, Pharmco-AAPER, Brookville CT) was diluted with RO 

water to 4% w/v alcohol. Orange-flavored, sugar-free, Tang® powder (Kraft Foods) was dissolved 

in RO water as described previously.64 The 3-ISOPBC was synthesized in the laboratory of Dr. 

James Cook (University of Wisconsin-Milwaukee1). Doses of 3-ISOPBC·HCl 2·HCl (5.0–30.0 

mg/kg) were dissolved in a vehicle of 50% saline, 37.5% propylene glycol, and 12.5% ethanol and 

administered via the intramuscular route (2–3 ml/injection). Vehicle tests were completed using 

the same volume and procedures as detailed below. 

3-ISOPBC test procedures  

 The baseline stability criterion was defined as stable self-administration of alcohol or non-

alcoholic beverage (i.e., ± 20%) for three consecutive sessions. To evaluate acute effects of 3-

ISOPBC on alcohol-related behaviors and to verify the safety of the dose range, in Experiment 1, 

doses of 3-ISOPBC (10.0–30.0 mg/kg) or its vehicle were administered acutely in the alcohol 

group only. The baseline stability criterion was met before each test dose of 3-ISOPBC·HCl. Doses 
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were tested in mixed order, with active doses tested no more than once per week. In Experiment 

2, doses of 3-ISOPBC·HCl (5.0–20.0 mg/kg) or vehicle was administered daily for 5 consecutive 

days to baboons in both groups. For both experiments, doses of 3-ISOPBC·HCl were administered 

30 min before sessions.  

Data analysis  

 The primary variables of interest included measures of seeking (Component 2: FI responses 

and latency to complete the FI requirement) and measures of consumption (Component 3: FR self-

administration responses, drink contacts, and volume consumed). Total g/kg and ml/kg consumed 

were calculated based on individual body weights, and the total volume of alcohol or non-alcoholic 

beverage consumed, respectively. The patterning of drinking was analyzed as a function of 

drinking “bouts” as in our previous study.65 A drinking bout was defined as 2 or more drinks with 

less than 5 min between each drink, beginning with the first drink. For each baboon, the mean of 

the 3 sessions that preceded each test condition was used as the baseline for comparison with doses 

of 3-ISOPBC and vehicle. To determine whether there were any differences in baseline responding 

in the alcohol and control groups, baseline responding in Experiment 2 was compared using 

independent-sample t-tests (baseline responding of the alcohol group in Experiment 1 is not 

included because corresponding control group sessions were not conducted). In Experiment 2, data 

analyzed were the last 3 of the 5 days of 3-ISOPBC or vehicle administration. Data were analyzed 

using separate statistical analysis of variance (ANOVA) for each group (Alcohol or Control) with 

3-ISOPBC dose (BL, 0.0–30.0 mg/kg) as a repeated measure. Bonferroni post-hoc tests were used 

for pair-wise comparisons of the vehicle with 3-ISOPBC doses. 
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2.4.4. Role of α1 GABAA Subunit-Containing Receptors in a Rhesus Monkey Model of 

Alcohol Drinking and Effect of βCCt and 3-PBC with Dr. Platt 

Subjects 

 Eleven adult male rhesus macaques (Macaca mulatta), weighing between 9 and 14 kg, 

served as subjects. Monkeys were individually housed in a colony room with a 12:12 hour 

light/dark cycle and were fed monkey chow (Harlan Teklad Monkey Diet; Harlan Teklad, 

Madison, WI) once daily after the conclusion of the day’s experimental session. Diets were 

supplemented with fresh fruit. Each animal received an additional 2 chow biscuits after the second 

hour of the 3-hour daily drinking session. Six monkeys participated in the alcohol self-

administration studies, and a separate cohort of 5 monkeys participated in the sucrose self-

administration studies. All animals had been previously trained to self-administer alcohol or 

sucrose using an operant panel.30,67 The sole exception was 1 sucrose drinker who had prior 

experience in operant intravenous cocaine self-administration procedures and was naive to the oral 

self-administration procedures. All procedures were conducted in accordance with the guidelines 

of the Committee on Animals of the Harvard Medical School and the National Institutes of Health 

Guide for the Care and Use of Laboratory Animals (Publication No. [NIH] 85-23, revised 1996). 

Research protocols were approved by the Harvard Medical School Animal Care and Use 

Committee. 

Self-Administration Procedures 

 Drinking sessions occurred 5 d/wk in the animal’s home cage. Each session lasted 3 hours. 

Access to water (via the standard cage associated sipper) was restricted beginning 1 hour before 

the start of the day’s experimental session and restored 1-hour post session. Animals were trained 

to drink either alcohol (2%, w/v; n = 6) or sucrose solution (0.3 or 1%, w/v, depending on the 
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animal; n = 5) using an operant drinking panel mounted on the side of the home cage. The alcohol 

concentration was chosen because it maintained intake significantly above water levels and is on 

the ascending limb of the concentration-effect curve30 thus allowing us to detect either increases 

or decreases in drinking. The sucrose concentrations were chosen because they maintained 

approximately equal levels of intake to ethanol (EtOH) under baseline conditions. The panel 

contained 2 retractable sippers (Med Associates, Inc., Georgia, VT) equipped with solenoids to 

minimize dripping and connected with tygon tubing to stainless steel reservoirs mounted outside 

of the cage. A response lever (Med Associates) was positioned below each sipper, and a set of 

colored lights positioned above. Each lever press resulted in an audible click and served as a 

response. In these experiments, only 1 side of the panel was active. Daily, illumination of white 

lights signaled the start of the session and alcohol or sucrose availability. Every 10 responses 

resulted in a switch from the illumination of the white light to illumination of a red light and 

extension of the drinking spout for 30 seconds. Depression of the spout during extension resulted 

in a fluid delivery, continuing as long as the sipper was both depressed and extended. Thus, both 

the actual duration (up to 30 seconds) and volume of intake were controlled by the subject. A brief 

(1 second) time out followed each spout extension, in which all stimulus lights were dark and 

responding had no programmed consequences. Responses were recorded and outputs controlled 

by a software program (MedPC; Med Associates). At the end of each session, reservoirs were 

drained and the amount of liquid consumed (ml) measured. Experimental compounds were 

administered as an intramuscular pretreatment 10 minutes before the start of a self-administration 

session. A range of doses was studied for each compound. Each dose of each compound was 

studied for a minimum of 5 consecutive sessions and until intake was stable, which was defined 

as no upward or downward trend in the amount consumed (ml) over 3 consecutive days. Following 
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evaluation of each dose, monkeys were returned to baseline self-administration conditions (i.e., 

with no pretreatment injection) until intake stabilized again. Doses were randomized within each 

treatment condition, and all doses of a particular compound were completed before beginning a 

new compound. 

Observable Behavior 

 The behavior of each monkey was recorded for 5 minutes each day immediately following 

the conclusion of the day’s self-administration session, using a focal animal approach as described 

in Platt and colleagues32,59 and modified for the rhesus monkey.30 Briefly, a trained observer blind 

to the drug treatments watched a specific monkey for 5 minutes and recorded each instance that a 

particular behavior occurred during 15-second intervals.30 Scores for each behavior were 

calculated as the number of 15-second bins in which the behavior occurred (e.g., a maximum score 

would be 20). The order in which animals were observed and the observer performing the scoring 

each day was randomized. Twelve observers participated in the scoring throughout the duration of 

the study; each observer underwent a minimum of 20 hours of training and met an inter observer 

reliability criterion of ≥ 90 % agreement with all other observers. 

Blood Alcohol Levels 

 Blood alcohol levels (BALs) were determined for monkeys self-administering alcohol once 

stable self-administration was achieved at each dose of the drug treatments. Monkeys were 

anesthetized with ketamine (10 mg/kg, intramuscularly) immediately following the day’s self-

administration and behavioral observation sessions and 3 to 5 ml of blood collected in a sterile 10-

ml tube (BD Vacutainer, sodium heparin 158 USP; BD, Franklin Lakes, NJ) from the femoral 

vein. Samples were then centrifuged at 1,1509g for 8 to 12 mins. The plasma was transferred to 

polypropylene tubes and frozen at -80°C for later analysis. The analysis was conducted using a 
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rapid high-performance plasma alcohol analysis using alcohol oxidase with an AM1 series 

analyzer and Analox Kit GMRD-113 (Analox Instruments USA, Lunenburg, MA). This process 

reliably detects BALs ranging from 0 to 350 mg/dl with an internal standard of 100 mg/dl. BALs 

were determined in triplicate. 

Drugs 

 Alcohol (95%; Pharmco Products, Brookfield, CT) was diluted to 2% w/v using tap water. 

Sucrose solutions were also prepared using tap water. The short-acting, nonselective 

benzodiazepine agonist triazolam68,69 and the α1GABAA preferring agonist zolpidem were 

obtained from Sigma/RBI (St. Louis, MO).70 The nonselective benzodiazepine antagonist 

flumazenil,71 α1GABAA preferring antagonist β-carboline-3-carboxylate-tert-butyl ester 

(βCCT),14 and nonselective benzodiazepine inverse agonist ethyl β-carboline-3-carboxylate72 

(βCCE) were either purchased from Sigma/RBI or provided by Dr. Jim Cook. The α1GABAA 

preferring antagonist 3- propoxy-β-carboline hydrochloride (3-PBC) was provided by Dr. Cook.14 

All drugs were administered via intramuscular injection. All drugs except 3-PBC and BCCE were 

dissolved in propylene glycol and then diluted to the desired concentration using a 50% propylene 

glycol, 50% sterile water solution. 3-PBC required EtOH to be solubilized (final concentration; 

10% EtOH, 50% propylene glycol, 40% sterile water), while βCCE was dissolved in a 20% 

emulphor, 10% EtOH, and 70% water vehicle. The doses for triazolam (0.001 to 1.0 mg/kg), 

zolpidem (0.1 to 10.0 mg/kg), BCCT (0.3 to 3.0 mg/kg), and 3-PBC (0.03 to 10.0 mg/kg) were 

chosen based on the previous studies in squirrel monkeys.27,73,74 Flumazenil doses (0.01 to 10 

mg/kg) were chosen based on the dose range needed to shift the alcohol dose–response function 

in cynomolgus macaques.75 βCCE doses (0.3 to 3.0 mg/ kg) were chosen based on the previous 

studies,76 but tests were halted at the appearance of seizures in 1 animal (see Results). The 
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appearance of behavioral effects in the observational measures was considered in determining 

doses for all compounds. 

Data Analysis 

 The alpha level for all statistical analyses was set at 0.05. Daily volumes (ml) served as the 

measure of intake for individual subjects. Dose was calculated as follows: [volume consumed (ml) 

alcohol concentration (g/ml)]/weight (kg). Data are expressed as mean intake over 3 sessions. To 

compare the effects of the test compounds on alcohol and sucrose self-administration, intakes were 

converted to percent baseline intake. Baseline intake was considered to be the mean amount of 

alcohol or sucrose consumed across the 3 days immediately prior to beginning pretreatment tests 

with a given dose of a compound. Separate 1-way repeated-measures analyses of variance 

(ANOVAs) followed by Bonferroni t-tests compared the effects of the pretreatment drugs to the 

effect of vehicle on intake and BALs. Given that self-administration sessions lasted 3 hours, one 

also characterized the pattern of drinking within the session using latency to first sipper extension 

and a total number of sipper extensions. Latencies and sipper extensions were recorded by the 

MedPC software system and later extracted manually from each day’s data file using cumulative 

records generated by SoftCR software (MedAssociates). Latencies and extensions are expressed 

as mean latency or extensions across the treatment and compared using separate 1-way repeated-

measures ANOVAs followed by Bonferroni t-tests to evaluate the effects of the pretreatment drugs 

compared with vehicle. Frequency scores for each observed behavior were averaged separately for 

the alcohol and sucrose groups and plotted as a function of dose for each of the α1GABAA-

preferring compounds. Normally distributed data (as determined by the Shaprio–Wilk test) were 

analyzed using a separate 1-way repeated-measures ANOVA (within group factor: dose) for each 

behavior. Bonferroni-corrected post hoc t-tests were used where appropriate. 
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2.4.5. Effect of 3-PBC·HCl (1·HCl) in Early Life Stress Induced Impulsivity Model and 

Excessive Alcohol Drinking in Adults MS Rats 

Animals 

 Pregnant Sprague-Dawley dams were obtained from Harlan Laboratories (Frederick, MD) 

and offspring used in this study were born on site at the veterinary facility. They were subjected 

to the MS paradigm as described below and were tested for drinking and impulsivity behaviors as 

adults. An equivalent number of males and females were used in the binge drinking and impulsivity 

studies. Subjects were housed in groups of 2–3 per plastic cage until drinking studies began. The 

vivarium was maintained at an ambient temperature of 21 °C and was on a reverse 12-h light/dark 

cycle. All rats were provided ad libitum access to food and water. All training and experimental 

sessions for all subjects took place between 8:30 AM and 5:30 PM. The treatment of all subjects 

was approved by the IACUC of the Howard University College of Medicine, Moreover, all 

procedures were conducted in strict adherence with the National Institutes of Health Guide for the 

Care and Use of Laboratory Animals. 

MS regimen 

 The maternal separation (MS) paradigm was performed as previously published,38,40 and 

was meant to emulate recurrent stressful experiences during the neonatal period. The number of 

pups in each litter ranged from 10 to 14 pups. To prevent litter effects, pups were sexed, culled to 

n¼10 with an equal number of males and females, and redistributed to nursing dams at P1. 

Beginning at P2 until weaning at P21, the separation comprised of removal of pups from their 

nursing mothers. They were brought to a designated room, separated from the mother, where the 

temperature was monitored and maintained at 29 °C. Each pup was placed in a cage located on a 

warmed pad, and visual access to other pups was blocked with cardboard. These conditions were 
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maintained for 3 h per day from 11:00 AM to 2:00 PM. After the 3 h separation time, they were 

returned to their home cage and rooms. Non-MS (CTL) pups were not separated from their mothers 

and were treated according to standard animal facility regulations. 

Use of animals 

 Forty adult rats from 21 litters were used; 12 for western blotting and 28 for the behavioral 

studies, used over several months. Although these studies were not aimed at examining sex 

differences, both males and females were always represented. Therefore, this is a mixed-sex study. 

In any behavioral experiment, to control for litter effects, the maximum number of pups used from 

a single mother was one male and one female. Therefore, for a n¼10 as an example, the minimum 

number of dams was 5 for each condition. For the operant binge drinking paradigm, there were 

n¼10 controls (5F, 5M) and n¼10MS (5M, 5F); 75% of these same animals were reused and added 

to other animals for the delay discounting experiments; n¼9 controls (5F, 4M) and n¼11 for MS 

(8F, 3M). For Western blotting analysis, a different cohort of animals was used with the same 

principle of heterogeneity to reduce litter effects; n¼5–6 controls (2–3F, 3M) and n¼6 for MS (3F 

and 3M). For drug dosage studies, some animals used were combined with other rats of the same 

age that had undergone similar sustained operant training to have a sufficient number for surgical 

implantation of the cannulae and subsequent behavioral testing, n¼5 for CeA drug infusion (3F, 

2M) and n¼4 for mPFC studies. 

Stereotaxic implantation of cannulae for microinfusions 

 Adult MS rats were anesthetized via isofluorane/oxygen gas inhalation and placed in a 

stereotaxic apparatus to allow for bilateral implantation of 22-gauge guide cannulae into the CeA 

or mPFC. The cannulae were anchored to the skull by four stainless steel screws and dental acrylic. 

A stylet was inserted into each cannula to maintain its viability and was only removed during 
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infusion times. The coordinates were based on the rat brain atlas of Paxinos and Watson as follows: 

CeA: AP, –2.0 mm; ML, ±3.6 mm; DV, –8.5mm from bregma; mPFC: AP, +2.7 mm; ML, ±1.45 

mm; DV, –2.5mm from bregma at a 16° angle to the midline. Each cannula was placed 1.0mm 

above the intended target. This allowed the injector tip to extend below the cannula tip. The 

animals were given a 3-day recovery period before re-stabilization on the delay discounting or 

operant drinking paradigms. After behavioral experiments, cannula placement was confirmed 

visually by examination of cryostat-generated 300 mm brain slices post-sacrifice. 

Drugs and micro infusion procedure 

 The 3-propoxy-9H-pyrido [3,4-b]indole hydrochloride, commonly known as 3-propoxy-β-

carboline hydrochloride (3-PBC), acting at the GABAA α1/α2 receptor, was obtained from Dr. 

James Cook at the University of Wisconsin-Milwaukee.1 Antalarmin hydrochloride, a CRF 

antagonist, was obtained from R&D Systems Inc. (Minneapolis, MN). The drugs were mixed into 

1mL of sterile PBS with Tween 20 added dropwise until dissolved, and then bilaterally infused 

into the CeA or mPFC at a rate of 0.1 mL/min for 5 min using a Harvard infusion pump. The 

overall design of experiments was such that doses of vehicle, 2, and 4 µg of antalarmin, or 20 or 

40 µg of 3-PBC were injected immediately prior to animals being placed in the operant or delay 

discounting chambers. Animals rested 1-3 days between doses. The antalarmin infusion studies 

occurred before the 3-PBC infusion studies and were at least 2 weeks apart for any given animal. 

Different animals were used for the CeA and mPFC infusions. Antalarmin and 3-PBC were 

administered to MS rats to test their effects on the heightened operant responding and impulsivity 

profile of MS, whereas CTL rats do not consume significant levels of alcohol at baseline, nor does 

their impulsivity profile differ significantly at 8 sec compared to a 0 sec delay. 
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Delay discounting [impulsivity] 

 The impulsivity paradigm was executed as described by Oberlin & Grahame.77 Impulsivity 

is operationally defined as choosing a smaller, immediate reward to the exclusion of a larger 

delayed reward,48 and was quantified using the adjusted amount delay discounting (DD) assay.78 

Operant boxes consisted of a nosepoke light, two levers, a cue light above each lever, a house light, 

and a 10mL descending sipper tube for saccharin reinforcement [0.03% w/v]. Control of the 

operant boxes and data collection was with the MedPC IV software (MedAssociates, St. Albans, 

VT). Before actual testing, rats underwent four stages of behavioral shaping: Stage 1 is run for 1 

session, and all center nose pokes are reinforced on a fixed ratio 1 (FR1) schedule with 20 s sipper 

access, where 1 lever press is required for sipper access. At stage 2, center nose pokes are 

reinforced on an FR1 schedule with 10 s sipper access, and the animal must complete 20 trials to 

move on to next stage. Stage 3 also requires 20 trials, but all trials are cued with a center light 

illuminated for 20 s. There is a 10 s intertrial interval. At stage 4, a nose poke and lever press is 

required for the 10-second sipper access, and both right and left levers are reinforced equally, 20 

trials with a 10 s intertrial interval in 60 min is required.77 After shaping, side bias was assessed 

by averaging the last 3 days’ choices on each side. The large reinforcer was then assigned to their 

non-preferred side, to counter any initial side bias. After shaping had been completed, rats were 

assessed at 0 s delay. This time point is used as a task to evaluate discrimination of reinforcer 

(saccharin) magnitude prior to the introduction of any delay to the larger reward. Immediate reward 

amount started at 1 s of saccharin access, and was adjusted upwards and downwards by 0.1 s based 

on the rat’s choices, i.e. an immediate choice resulted in down-adjustment of the sipper access 

time by 0.1 s on the next trial, whereas a delayed choice resulted in up-adjustment of the sipper 

access time by 0.1 s in the next trial. The total adjustments in access were restricted to a minimum 
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of 0 s and a maximum of 2 s. Average adjusted amounts of the reward over the last 20 trials of the 

session served as the measure of adjusted amount. All rats received 2- hour water access in their 

home cages at the end of daily testing.77  

Phase 1: Following behavioral shaping rats, were tested in the delay discounting paradigm at 0, 1, 

4, 8, 12, 16 and 20 s delays. Each delay was tested for two consecutive sessions, and the two-day 

data for each delay was averaged. 

Phase 2: Following completion of Phase 1, rats were randomly separated into treatment groups 

and bilaterally implanted with cannulae in the mPFC or CeA. After restabilization on the DD 

paradigm at a delay of 8 s, rats were infused with 3-PBC [20 or 40 µg] or antalarmin [2 or 4 µg] 

as described above and run in the impulsivity paradigm with an 8 s delay. 

Operant drinking apparatus 

 Animals were tested in 11 standard operant chambers (Coulbourn Instruments, Inc., Lehigh 

Valley, PA) enclosed in an isolated chamber as previously described.79 The operant apparatus 

contained two levers, two dipper manipulanda, triple cue lights over each lever, and a house light. 

The dipper cup size which contained the 10% (v/v) alcohol or 3% (w/v) sucrose reinforcers was 

0.1 mL. The Coulbourn Graphic State ‘‘3’’ operant software (Coulbourn, Whitehall, PA) was used. 

Drinking in the dark multiple scheduled access paradigm 

 To initiate excessive ‘‘binge’’ alcohol drinking, we employed a modification of the 

drinking-in-the-dark-multiple-scheduled- access (DIDMSA) protocol.79,80 First, the procedure 

entailed adapting the rats to a reverse 12 h/12 h light/dark cycle which began at 7:00 PM [lights 

on] and lasted to 7:00 AM [lights off]. Rats were trained to orally self-administer EtOH daily for 

two 45 min sessions with 30 min rest in between under an FR1 schedule employing the sucrose 

fading technique.13 After a period of stabilization on the FR1 schedule, the response requirement 
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was then increased to an FR4 schedule, where 4 lever presses were required for access to the 

reinforcer. For each schedule, responding was considered stable when responses were within ± 

20% of the average responses for five consecutive days. Stabilization on the FR4 schedule took 

~8 days. During the stabilization procedures, the animals were never deprived of food or fluid. 

These procedures are well established in our laboratory.38,79 Other cohorts of rats were given a 3% 

[w/v] concentration of sucrose and trained identically under the FR1, then FR4, schedule. 

Following stabilization on the FR4 schedule for EtOH/ sucrose, the DIDMSA protocol began using 

an FR4 schedule where the rats were given access to 10% alcohol, or 3% sucrose on both the left 

and right levers. To initiate the DIDMSA protocol during the dark phase, rats were given a 45 min 

operant session. After the session had elapsed, rats were then placed in the home cage with food 

and water ad libitum for 30 min. Rats were then given a second 45 min operant session and 

subsequently returned to their home cage. Rats engaged in the alcohol drinking for 21 consecutive 

days. Using this protocol, the MS rats in the laboratory produced consistent BACs of 99 ± 3 mg%. 

Sucrose control rats were trained similarly, but lever pressed for a 3% sucrose solution instead of 

ethanol. The sucrose control rats permitted evaluation of reinforcing specificity following MS and 

drug treatments. Following 21 days of alcohol or sucrose drinking, rats were surgically implanted 

with bilateral cannulae into the CeA or mPFC. Rats (N¼5/6) were then infused with 3-PBC [20 or 

40 µg] or antalarmin [2 or 4 µg] as described above and were immediately placed in the operant 

chambers to respond for alcohol or sucrose. A 2-hour session consisted of two 45 min (90 min) 

access and 30 min of rest.  

Blood alcohol concentration measurement 

 To ensure animals were consuming pharmacologically relevant amounts of EtOH to model 

human binge drinking (NIH-NIAAA, 2004),81,82 ~ 100 µL of whole blood was collected from the 
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tail vein of MS and CTL rats (N¼4/treatment group) into a heparin-coated tube. After collection, 

the whole blood was immediately centrifuged for 5 min at 1100 rpm. Plasma samples of 5 mL 

were analyzed in a GL-5 Analyzer (Analox Instruments, Lunenburg, MA). Microanalysis 

consisted of measuring the oxygen consumption in the reaction between the sample of alcohol and 

alcohol oxidase using a Clark-type amperometric oxygen electrode. Alcohol reagent buffer 

solutions (pH 7.4) and alcohol oxidase enzymes were used in all samples tested. BACs were 

determined in duplicates after 90 min of drinking. 

2.4.6. Effect of PBC Isoforms on Alcohol Drinking in P rats and Effect of 3-CycloPBC and 

3-ISOPBC in Maternally Deprived (MD) Rats with Dr. Marjorie Gonde-Lewis 

Drug Preparation 

Four GABAA receptor acting isoforms of 3-propoxy-β-carboline hydrochloride (3-PBC), 

namely βCCt, 3-ISOPBC, and cyclo-PBC, administered as HCl salts at doses of 5, 15, and 40 and 

75 mg/kg, were utilized as drug treatments in this study.  Each drug was prepared by dissolving 

the powder in a cocktail of 2% Tween and 99.8% saline solution.  A pestle and mortar were 

commonly used to facilitate the entry of the drug into solution by placing the appropriate amount 

of Tween and drug in the mortar to create a paste.  The volume of saline was added slowly to the 

mortar to bring it up to the necessary volume.   Drugs were administered to each rat via oral gavage. 

Subsequently, rats were placed into the operant drinking chambers 15 minutes after gavage. 

Operant Drinking 

The following protocol was approved by the Howard University Animal and Use 

Committee.  The PD72 Sprague-Dawley rats were trained for alcohol drinking using the drinking 

in the dark multiple schedule access (DIDMSA) paradigm involving multiple scheduled ethanol 

access sessions during the dark cycle of the rat.  To facilitate shaping which induced the propensity 
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to seek fluid, animals were water-deprived for 23 h/day for the first two to three days of the training 

period. Rats were removed from their home cages and placed in operant conditioning boxes to 

begin lever pressing training using a 10% sucrose solution in tap water. Rats were trained for a 

total of 10-14 days in two 30-min daily sessions with a 45 minute break in between sessions.  The 

drinking sessions are identified by one of two fixed ratio (FR) protocols; namely the FR1 or FR4 

schedules which represent one and four lever presses, respectively, for the administration of 

reinforcer in the operant chamber. The reinforcer is administered in 0.1 mL aliquots.  When the 

animals have been determined to be responding rapidly on the fixed ratio one (FR1) schedule for 

the 10% sucrose reinforcer solution, the deprivation was discontinued until stabilization was 

achieved. The response requirement was subsequently increased from FR1 to an FR4 schedule. 

Once responding stabilized, rats were exposed to 6 successive sessions in which the drinking 

solution was alternated daily between an EtOH/sucrose cocktail and EtOH (10% v/v) only. After 

this 6 day alternation procedure, EtOH concentrations in the EtOH/sucrose cocktail solution will 

be gradually raised from 2% to 5%, 7%, 9% and 10% (v/v) with the concentration of sucrose 

decreasing from 0.075% to 0.055, 0.025% and 0.0125% (w/v) and eventually eliminated at the 

10% EtOH concentration level.  All drug studies commenced once lever pressing for 10% EtOH 

on the FR4 protocol stabilized. 

2.4.7. Effect of βCCt, 3-PBC, and 3-ISOPBC on the Spontaneous Locomotor Activity (SLA) 

and Diazepam Induced Sedation in Mice with Dr. Savic 

Materials and methods 

 To assess the influence of 3-ISOPBC and 3-PBC on basal motor activity and diazepam-

induced sedation, spontaneous locomotor activity assay (SLA) was performed in male C57BL/6 

mice. The minimal dose of diazepam (DZP) which consistently induces sedation in animals in 
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given conditions was determined in the pilot dose-response study (data not shown). The SLA study 

was performed through two independent experiments. Firstly, the influence of 3-ISOPBC, 3-PBC, 

and βCCt (as the positive control) on basal motor activity and DZP-induced sedation was assessed 

in a full factorial design. The second experiment used the partial factorial design and the three 

times higher doses of ISOPBC and 3-PBC combined with DZP. 

 Spontaneous locomotor activity was assessed in an apparatus consisting of four white and 

opaque Plexiglas chambers (40×25×35 cm) under dim red light (20 lux). A digital camera mounted 

on the apparatus recorded animal activity, which was tracked and analyzed using ANY-maze 

Video Tracking System software (Stoelting Co, Wood Dale, IL, USA). DZP, βCCt, 3-PBC, and 

3-ISOPBC were dissolved/suspended with the aid of sonication in the solvent (SOL) containing 

85% distilled water, 14% propylene glycol and 1% Tween 80. In the first experiment, eight 

treatments were applied (n = 6-8 for each): SOL + SOL, DZP + SOL, βCCt + SOL, 3-PBC + SOL, 

3-ISOPBC + SOL, βCCt + DZP, 3-PBC + DZP and 3-ISOPBC + DZP, all administered 

intraperitoneally in two injections one after another at separate sites in a total volume of 20 ml/kg. 

DZP was applied in a dose of 2 mg/kg, while the administered dose of βCCt, 3-PBC and 3-ISOPBC 

was 10 mg/kg. The second experiment included four treatments (n = 6 for each): SOL + SOL, DZP 

+ SOL, 3-PBC + DZP and 3-ISOPBC + DZP, with 3-PBC and 3-ISOPBC being dosed at 30 mg/kg. 

In both experiments, a single mouse was placed in the center of the chamber without the 

acclimatization period, and its activity was followed for a total of 90 minutes. Chambers were 

cleaned with 70% ethanol after every trial. The behavioral parameters analyzed were the total 

distance traveled (m) and total time immobile (min) in two periods of time: 0–90 and 0–60 minutes. 

Statistical analysis (SigmaPlot 12.0, Systat Software Inc., San Jose, CA, USA) included two-way 

ANOVA for the first experiment (factors: Agonist (SOL and DZP) and Antagonist (SOL and βCCt 
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or PBC or ISOPBC), and one-way ANOVA for the second experiment; post hoc Student-Newman-

Keuls (SNK) tests were used where applicable. 

2.4.8. Determination of CNS (Central Nervous System) Sensorimotor Effects using Rotarod 

Studies with Nicholas Zahn at UWM 

 Swiss Webster/Balb/c mice were trained to maintain balance at a constant speed of 15 rpm 

on the rotarod apparatus (Omnitech Electronics Inc. Nova Scotia, Canada) until mice could 

perform for 3 min at three consecutive time points. Separate groups of mice received oral gavage 

administration (Intraperitoneal injections- 3-ISOPBC) of the vehicle (10% DMSO, 40% propylene 

glycol and 50% PBS) or test compounds. Diazepam was used as a positive control compound (5 

mg/kg) in an approximate volume of 100 ml. Ten minutes (five minutes for 3-ISOPBC·HCL) after 

each injection, mice were placed on the rotarod for 3 min. The same was repeated for 30 minutes 

and 60 minutes after administration. A fail was assigned for each mouse that fell from the Rotarod 

prior to 3 min. Mice were rested two to three days before administration of another dose or a 

different compound. 

2.4.9. In-vitro Metabolic Stability Studies in Human Liver and Mouse Liver Derived 

Microsomes with Revathi Kodali at UWM 

Chemicals and Reagents 

 Test compound (1 mM in DMSO), Verapamil HCl (1 μM in Acetonitrile), phosphate buffer 

(0.5 M) pH 7.4, 18 mΩ water, NADPH Regenerating System Solution A (BD Bioscience Cat. 

No.451220), NADPH Regenerating System Solution B (BD Bioscience Cat. No. 451200), Human 

pooled liver microsome (BD Gentest, Cat. No. 452156), Mouse liver microsomes (Life 

Technologies, Cat. No. MSMC-PL). 
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Microsomal stability assay 

 Test compounds (10 μM) were incubated with human and mouse liver microsomes at a 

protein concentration of 0.5 mg/mL in a total volume of 400 μL containing 282 μL of water, 80 

μL of phosphate buffer (0.5 M) pH 7.4, 20 μL of NADPH Solution A, 4 μL of NADPH Solution 

B, 4 μL of test compound (1 mM in DMSO) and 8.8 μL of liver microsomes. After preincubation 

at 37 °C for 5 minutes, the reaction was initiated by addition of microsomes and vials were stirred 

using a digital heat-shaking dry bath (Fischer Scientific, Cat. No. S08040). Aliquots of 50 μL were 

taken at time intervals of 0 (without microsomes), 10, 20, 30, 40, 50 and 60 min. Each aliquot was 

added to 100 μL of cold acetonitrile solution containing 1 μM of the internal standard verapamil, 

followed by sonication for 10 seconds and centrifugation at 10,000 rpm for 5 minutes. The 100 μL 

of the supernatant was transferred into Spin-X HPLC filter tubes and centrifuged at 13,000 rpm 

for 5 min. The filtrate was diluted and subsequently analyzed by LC-MS/MS (Shimadzu LCMS 

8040). The ratio of the peak areas of the internal standard and test compound was calculated for 

every time point, and the natural log of this ratio was plotted against the time to determine the 

linear slope (k). The metabolic rate (k*C0/C), half-life (0.693/k), and internal clearance (V*k) were 

calculated, where k is the slope, C0 is the initial concentration of test compound (μM), C is the 

concentration of microsomes (mg/mL), and V is the volume of incubation (μL)/protein in the 

incubation (mg). All incubations throughout the study were performed in three experiments carried 

out in duplicate, and the data was presented as the average value of the standard deviation. 
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2.4.10. Evaluation of Cytotoxicity of β-Carbolines in HEK 293 and HEPG2 cells (Dr. 

Michael Rajesh Stephen at UWM) 

Cytotoxicity Assay Method  

 Human liver hepatocellular carcinoma (HEPG2) and human embryonic kidney 293T 

(HEK293T) cell lines were purchased (ATCC) and cultured in 75 cm2 flasks (CellStar). Cells were 

grown in DMEM/High Glucose (Hyclone, #SH3024301) media to which nonessential amino acids 

(Hyclone, #SH30238.01), 10 mM HEPES (Hyclone, #SH302237.01), 5 x 106 units of penicillin 

and streptomycin (Hyclone, #SV30010), and 10% of heat inactivated fetal bovine serum (Gibco, 

#10082147) was added. Cells were harvested using 0.05% Trypsin (Hyclone, #SH3023601), 

washed with PBS, and dispensed into sterile white, optical bottom 384-well plates (NUNC, 

#142762). After two hours, small molecule solutions were transferred with a Tecan Freedom EVO 

liquid handling system equipped with a 100 nL pin tool (V&P Scientific). The controls were 3-

dibutylamino-1-(4-hexyl-phenyl)-propan-1-one (25 mM in DMSO, positive control) and DMSO 

(negative control). The cells were incubated for 48 hours followed by the addition of CellTiter-

Glo™, a luminescence-based cell viability assay (Promega, Madison, WI). All luminescence 

readings were performed on a Tecan Infinite M1000 plate reader. The assay was carried out in 

quadruplet with three independent runs. The data were normalized to the controls and analyzed by 

nonlinear regression with GraphPad Prism.  

2.4.11. Synthesis of 3-CycloPBC·HCl and WYS8 

The amine 19 and WYS8 were synthesized as described previously in the literature.14 
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2.4.11.1. 3-Cyclopropoxy-9H-pyrido[3,4-b]indol-2-ium chloride (20) 

 

 An oven-dried round bottom flask was charged with amine 19 (1 g, 5.5 mmol), 

cyclopropanol (10 mL), TFA (2.1 mL, 27.72 mmol) added dropwise under a positive pressure of 

argon and cooled to 0 ºC. Tert-butyl nitrite (3.3 mL, 27.72 mmol) was added dropwise slowly; the 

reaction mixture, which resulted, was then stirred for 30 mins at 0 ºC, which resulted in a formation 

of red colored solution. It was then allowed to warm to 15 ºC slowly and stirred for 10-15 min, 

meanwhile the reaction progress was monitored by TLC (silica gel, 50% EtOAc in hexane). After 

disappearance of starting material, the reaction mixture was diluted with EtOAc and concentrated 

under vacuum to yield the crude reaction mixture which was quenched with a sat aq NaHCO3 

solution (10 mL), and extracted with ethyl acetate (3 × 20 mL). The combined organic layer was 

washed with brine (60 mL), dried (Na2SO4), and concentrated under vacuum to yield the crude 3-

cycloPBC. This material was further purified by flash column chromatography (silica gel, 20-30% 

EtOAc in hexane) to yield the 3-cycloPBC 20 as a light yellow colored solid (802 mg, 65%). 

Caution: To further scale up (> 1.5 g) the reaction may become dangerous and safety precautions 

must be considered. This material was further converted into the hydrochloride salt, which was 

prepared by the reported method1 to furnish a quantitative yield of 20·HCl (932 mg) as a stable 

light greenish yellow colored solid; mp: 256-259 °C; 1H NMR (300 MHz, DMSO-d6) δ 12.03 (s, 

1H), 8.70 (s, 1H), 8.42 (d, J = 8.0 Hz, 1H), 8.24 (s, 1H), 7.78 – 7.61 (m, 2H), 7.34-7.29 (m, 1H), 

4.41 – 4.30 (m, 1H), 1.03 – 0.91 (m, 2H), 0.92 – 0.82 (m, 2H); 13C NMR (75 MHz, DMSO-d6) δ 
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154.5, 144.7, 136.3, 132.2, 131.4, 125.3, 123.8, 120.4, 120.2, 112.9, 100.2, 53.2, 6.5; HRMS (ESI-

TOF) (m/z): [M+H]+ calcd for C14H13N2O: 225.1023, found: 225.1004 [note: The molecular ion 

was found devoid of the HCl and this is very common in the mass spectroscopy for salts]  
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PART - II 

 DESIGN AND SYNTHESIS OF NOVEL ANTIMICROBIALS FOR 

THE TREATMENT OF DRUG RESISTANT BACTERIAL 

INFECTIONS 
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CHAPTER 3 

INTRODUCTION TO ANTIBIOTICS 

3.1. BRIEF HISTORY OF ANTIBIOTICS AND CLASSIFICATION 

 “Magic Bullet” as a term was first introduced by Paul Ehrlich1, the father of chemotherapy, 

to describe a chemical compound that selectively targets pathogens and toxins in the human body 

with high affinity at lower concentrations without affecting the host cells.2-5 Ehrlich was convinced 

that a chemical compound could be synthesized in the laboratory that targets a parasite living in 

the other organism without affecting the host cell. This idea paved the way to the design of a drug 

to treat syphilis caused by Treponema pallidum, a terrible disease prominent during the early 

1900's.6 Ehrlich along with another chemist Alfred Bertheim, and the bacteriologist, Sahachiro 

Hata discovered the agent during testing of 606 compounds; the drug was the 606th of the series 

and was employed treat to syphilis (Figure 3-2).7 Hoechst marketed this 606th compound under the 

name Salvarsan, and together with Neosalvarsan, a more soluble and less toxic analog, have 

remained the most prescribed drugs for syphilis (Figure 3-1).8  

 
Figure 3-1. Structures of Salvarsan and Neosalvarsan 

 In the early days of research on antibiotics, two chemists from Bayer, Josef Klarer and Fritz 

Mietzsch synthesized the sulfa drug, sulfonamidochrysoidine. This medication known as Prontosil 

was tested for antibacterial activity in many diseases by Domagk.9 Despite the development of 

resistance to sulfa drugs, the derivatives of sulfanilamide remain one of the most successful drugs 
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even today.10 In September 1928 another discovery that revolutionized the status of medicine was 

the discovery of pencillin by Alexander Fleming.11 Penicillin first was isolated from the mold of a 

Penicillium genus and found to be effective against gram-positive bacteria. The development of 

the purification of penicillin by Howard Florey and Ernest Chain led to mass production of the 

antibiotic for clinical applications.12 

   Salvarsan, Prontosil, and penicillin 

stimulated the interest in the discovery of new 

antibiotics. Many novel drugs have been discovered 

between 1950 and 1970, which has been called the 

“golden era” of antibiotics. Later with the 

emergence of antibiotic resistance, many new 

antibiotics have been produced by modification of 

existing drugs to counter emerging drug resistance 

and reemerging resistance rather than a completely 

new class of medications.6 

 More than ever today, antibiotics remain 

essential medicines that effectively fight against life-

threatening illnesses.13 There is always a need for new antibiotics to cure infections and save lives. 

The development of bacterial resistance to previous drugs demands more immediate development 

of new antibiotics. Several different classes of antibiotics have a unique mode of action and are 

described below.14  

 

 

Figure 3-2. Paul Ehrlich (1854-1915) and 

Sahachiro Hata (1873-1938), Frankfurt 1910. 

Their partnership led to the discovery of a 

Salvarsan (Credit: Paul-Ehrlich-Institut, Langen, 

Germany)  
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3.1.1. Sulfonamides 

 This class of antibiotics contains an aryl sulfonamide moiety as a common structural 

feature. Prontosil was, as mentioned, the first discovered sulfonamide antibiotic.15 It acts by 

inhibiting dihydropteroate synthase, an enzyme involved in folic acid metabolism.14 In this 

paradigm DNA replication was repressed due to enzyme inhibition, and the agents which result 

from this, have shown bacteriostatic activity against gram positive and negative bacteria.16 Another 

drug, sulfamethoxazole, in combination with trimethoprim is used to target MRSA (Methicillin 

resistant Staphylococcus aureus) strains (Figure 3-3).17  

 

Figure 3-3. Structures of sulphonamides, and trimethoprim 

3.1.2. β-lactams  

 These are very broad spectrum antibiotics active against most aerobic and anaerobic gram-

positive and negative bacteria. The four-membered β-lactam ring is the active pharmacophore of 

these drugs and is critically important in clinical use.18  

 

Figure 3-4. β-lactams target interactions and associated cell death16  
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3.1.2.1. Penicillins 

 Benzylpenicillin (penicillin G) was the first β-lactam antibiotic which was discovered; 

these β-lactam antibiotics are classified as penicillins, cephalosporins, and carbapenems. These 

antibiotics inhibit cell wall biosynthesis by acting as suicide substrates for penicillin binding 

proteins (PBP’s) specifically affecting the peptidoglycan layer (Figure 3-4).19 

 Modifications have been made to penicillin G to increase the stability to penicillinases with 

bulky side chains in the case of methicillin and oxacillin. The ampicillin and amoxicillin, which 

are aminopenicillins and ureidopenicillin (such as piperacillin), are modified structures that show 

an increased spectrum of activity, as compared to penicillin G (Figure 3-5).14 

 
Figure 3-5. Structures of Penicillin antibiotics 

3.1.2.2. Cephalosporins 

 Cephalosporin C was the first cephalosporin that was developed. These agents are thought 

to have a high pharmacokinetic profile and increased spectrum of activity, particularly against 

gram-negative bacteria. The FDA has approved the fifth generation cephalosporin, ceftaroline, 

which is active against MRSA20,21 and in combination with tazobactam, it has shown promising 

activity against resistant strains.22 The ceftolozane, currently in phase III clinical trials, is an 
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effective antibiotic against multidrug resistance gram-negative bacteria including E. coli, K. 

pneumonia, and with superior activity against P.aeruginosa (Figure 3-6). 

Figure 3-6. Structures of cephalosporin antibiotics and tazobactam 

 

3.1.2.3. Carbapenem 

 

 

 

 

 

 

Figure 3-7. Structures of carbapenem antibiotics 

 Carbapenems are known to exert enhanced activity as drugs because they are resistant to 

extended broad-spectrum beta-lactamases (ESBLs.). Imipenem was first identified as a 

carbapenem in 1976.23 Doripenem was approved in the US (2007) and Japan (2005); it is superior 

among the carbapenems particularly active against P.aeruginosa. However, it lacks activity 

against MRSA. A phase II carbapenem (razupenem) is known to be very effective against 

ampicillin resistant E.faecium (Figure 3-7).24  
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3.1.3. Aminoglycosides 

Figure 3-8. Aminoglycosides target 30S ribosome interactions and associated cell death mechanism16 

 Aminoglycosides are broad spectrum antibiotics active against most of the gram-negative 

bacteria including M. tuberculosis and some aerobic gram-positive bacteria. These agents consist 

of amino sugars connected through glycosidic bonds typically to a 2-deoxystreptamine core 

moiety. Streptomycin was the first important aminoglycoside antibiotic which was developed .15 

The mode of action of these drugs is to target the 30s ribosomal subunit leading to a mistranslation 

in protein synthesis, which ultimately results in cell death (Figure 3-8).16  

 Until the occurrence of the mutation in a 30S ribosomal protein, streptomycin was used as 

the first-line agent for the treatment of tuberculosis.25 Gentamicin, a natural aminoglycoside 

obtained from Micromonospora, is widely used against infections due to Enterococci, 

Streptococci, and P. aeruginosa. Tobramycin is unique and demonstrates its effect in cystic 

fibrosis and resultant P. aeruginosa lung infections (Figure 3-9).26 

 
Figure 3-9. Structures of Aminoglycoside antibiotics 
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3.1.4. Macrolides 

 Erythromycin was the first macrolide antibiotic and was discovered in 1949. It was 

introduced into clinical use in 1951. Macrolides contain macrocyclic lactone rings with deoxy 

sugars, specifically cladinose or dosamine, attached by glycosidic bonds. Similar to 

aminoglycosides, they also act on ribosomes which interfere with protein synthesis. The binding  

of macrolides to the 50S subunit of ribosomes blocks the exit channel for peptides which results 

in the premature dissociation of peptidyl-tRNA from the ribosome and cell death.27      

 
Figure 3-10. Structures of macrolide antibiotics 

 Macrolides act as bacteriostatic agents with broad spectrum antibacterial activity against 

aerobic and anaerobic gram-positive and some gram-negative bacteria. Azithromycin at higher 

concentrations serves as a bactericidal agent against infections caused by H. influenza.28 Improved 

pharmacokinetics, stability and expanded spectrum of action engender azithromycin and 

clarithromycin as first line antibiotics (Figure 3-10).29 

3.1.5. Tetracyclines 

 Chlortetracycline was the first tetracycline discovered, and the tetracycline antibiotics 

contain the octahydrotetracene skeleton. These bacteriostatic agents attach to the 30S ribosomal 

subunit blocking aminoacyl-tRNA access to the ribosome during protein synthesis. The low 
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occurrence of severe side effects make these tetracycline antibiotics the first line therapy to treat 

many bacterial infections.30  

 

Figure 3-11. Structures of tetracycline antibiotics 

 Most of the first tetracyclines such as tetracycline, oxytetracycline, and demeclocycline are 

natural products, but the semisynthetic derivatives such as doxycycline and minocycline have 

shown good pharmacokinetic profiles.31 The fluorocycline, eravacycline in phase III clinical trials, 

is active against MRSA, vancomycin resistance Enterococci (VRE), C. difficile, and Klebsiella 

pneumoniae carbapenemase (KPC) producing gram-negative bacteria (Figure 3-11).32  

3.1.6. Rifamycins 

 Rifampicin is derived semi-synthetically from rifampicin B, a natural product obtained 

from Nocardia in 1957 by Lewis et al. These are ansamycin compounds which contain 

macrocyclic structures with a bridging aromatic moiety.15 Rifamycins are active against gram-
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positive bacteria and M. tuberculosis, and because of low cellular permeability, they act as 

bacteriostatic agents in gram-negative bacteria.33 

 
Figure 3-12. Structures of rifamycin antibiotics 

 Rifamycins interfere with the transcription process by binding with the β- subunit of RNA 

polymerase preventing the formation of m-RNA required for protein synthesis. Rifampicin is used 

in combination therapy with isoniazid and pyrazinamide as the first-line therapy in TB 

(tuberculosis) infections. Because of its high efficacy and common use for TB, rifampicin along 

with rifabutin and rifapentine are considered by the WHO as essential medications.18 Rifaximin is 

the only antibiotic approved by the FDA to treat E. coli infections associated with traveler’s 

diarrhea (Figure 3-12).14  

3.1.7. Quinolones 

 All quinolone antibiotics contain, of course, the basic quinolone core which usually is 

linked to an N-cyclic heterocycle with different substituents in the aromatic ring – A C (6) and/or 
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C (7) positions. Even though nalidixic acid (in a technical sense, it is a naphthyridone, not a 

quinolone) it was the first quinolone one discovered (1968). Ciprofloxacin, the synthetic analog of 

nalidixic acid, was introduced clinically.15 

 
Figure 3-13. Quinolone drug interactions and associated cell death mechanism16  

  

 

 

 

 

 

 

 

Figure 3-14. Structures of quinolone antibiotics 

 The unique mode of action of quinolones is to target topoisomerases II (DNA gyrase) and 

IV. These enzymes are involved in the DNA cleavage stage, consequently inhibiting DNA 

synthesis (Figure 3-13). The modern quinolones are known for bactericidal activity against most 
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gram positive and negative organisms. Because of poor biodistribution and a low spectrum of 

activity, the first-generation quinolones are rarely used today, the second-generation quinolones 

are characterized with board spectrum activity in particular to gram-negative organisms. 

Ciprofloxacin, which belongs to the second generation has gained much attention due to its activity 

against virulent strains of Bacillus anthracis (anthrax) and Yersinia pestis (plague). Levofloxacin, 

the third generation quinolone is active against Streptococcus organisms. The fourth generation 

fluoroquinolones, sitafloxacin and clinafloxacin, target both DNA Gyrase and Topoisomerase IV 

simultaneously. The fourth generation quinolones exhibit an expanded spectrum of activity against 

anaerobic bacteria (Figure 3-14).14 

3.1.8. Glycopeptides 

 The glycopeptides are known to inhibit cell wall biosynthesis, but act differently as 

compared to β-lactams. These macrocyclic peptides are interspersed with aromatic moieties and 

saccharide side chains connected through glycosidic bonds. The well-known vancomycin was the 

first glycopeptide discovered in 1952.15 Glycopeptides bind sterically to the terminal D-Ala-D-Ala 

dipeptide unit of peptidoglycan units which render them unsuitable as substrates for PBP’s and 

transglycosylases which interferes with the cell wall synthesis in gram-positive bacteria.34 
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Figure 3-15. Structures of glycopeptide antibiotics 

 Vancomycin and teicoplanin are two drugs with the same efficacy, but the side chain of 

teicoplanin helps to overcome the drug resistance due to vancomycin. In 2009, the US FDA 

approved telavancin for use against MRSA, resistant Enterococci.35 Oritavancin, the current drug 

in Phase III clinical trials is particularly active against Vancomycin Resistant Staphylococcus 

aureus, S. Pneumoniae, and Vancomycin-Resistant Enterococci (Figure 3-15).36  

3.1.9. Polymyxins 

 Polymyxins A-E are natural products derived from bacillus and were first discovered in 

1947.37 These exert board spectrum activity particularly against gram-negative bacteria, although 

some strains of E. coli, Klebsiella, Enterobacter and M. tuberculosis developed resistance.38,39
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 Figure 3-16. Structures of polymyxin antibiotics 

 Polymyxins are polycationic species that displace the stabilizing magnesium and calcium 

ions which normally interact, electrostatically, with the anionic lipopolysaccharide (LPS) outer 

layer in gram-negative membranes. This interaction leads to increased permeability, cell leakage 

and eventually cell death.40 Colistin A and B antibiotics are also known to have potential anti-

endotoxin activity41 as an added benefit to combat infections and are used in the treatment options 

against MDR Pseudomonas, Klebsiella, and Acinetobacter strains (Figure 3-16).42 

3.1.10. Oxazolidinones 

  The oxazolidinone antibiotics contain a shared oxazolidinone core with N-linked aryl and 

heterocyclic rings and as well as a short side chain at C-5. The peptidyl transferase center on a 50S 

ribosomal subunit is a potential target site for these antibiotics, which leads to blockage of peptide 

bond formation and subsequently interferes with protein translation.43  
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Figure 3-17. Structures of oxazolidinone antibiotics 

 Linezolid is used to treat infections caused by resistant gram negative bacteria including 

MRSA and VRE.44,45 Many of the oxazolidinones were set back due to poor solubility, 

pharmacokinetics, and toxicity profiles.46 However, tedizolid and radezolid, currently in clinical 

trials, have shown improved activity even against Linezolid-resistant Staphylococci and MRSA 

strains.47 Sutezolid of Pfizer’s is in phase II clinical trials and is particularly active against M. 

tuberculosis isolates which are resistant to isoniazid, rifampicin, ethambutol, and streptomycin 

(Figure 3-17).48 

3.1.11. Streptogramins 

 Based on the mechanism of action and structure, the streptogramins are classified into class 

A, and class B. Class A compounds are 23 membered unsaturated macrocycles which contain 

peptide and lactone bonds. These Class A antibiotics bind to the PTC (peptidyl transfer center) 

region of the 50S ribosomal subunit to inhibit initiation and translocation of protein formation. 

Class B streptogramins are 19 membered depsipeptides which bind at the peptide exit tunnel and 

further inhibit the elongation stage of translocation during protein synthesis.15,16 
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Figure 3-18. Strutures of streptogramin antibiotics  

 These agents are typically used in pairs for clinical applications. Pristinamycin is one 

among them, and itself is a combination of class A and B molecules. Dalfopristin and 

pristinamycin exhibit excellent antibacterial properties against MRSA. Quinupristin exerts activity 

against vancomycin-resistant E. faecium and is bacteriostatic in strains which contain 

erythromycin resistant methylase (erm) genes (Figure 3-18).49 

3.1.12. Amphenicols 

 Chloramphenicol is the only member of this class to be approved. It is active against gram 

positive and negative bacteria including anaerobes (Figure 3-19).16 These phenylpropanoid 

antibiotics bind to the peptidyl transferase center of the 50S ribosomal subunit to inhibit the 

elongation step of translation in protein synthesis.50 Amphenicols exhibit bactericidal activity 

against H. influenza, N. meningitidis, and S. pneumoniae.  

 
Figure 3-19. Structure of chloramphenicol 

3.1.13. Lipopeptides 

 Lipopeptides are complex molecules which contain cyclic depsipeptides with peptidyl side 

chains capped with a saturated alkyl tail. They disrupt the structural integrity of cell membranes 

by inserting their lipophilic tails into the cytoplasmic membranes of gram-positive bacteria. This 
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integration leads to potassium efflux due to depolarization of cell membranes and eventually cell 

death.15

 

Figure 3-20: Structures of lipopeptide antibiotics 

 Daptomycin exhibited excellent activity against gram-positive pathogens including MRSA 

and VRE.51  Surotomycin is in phase III clinical trials and was found effective against  

C. difficile infections (Figure 3-20).  

 In addition to the well-known antibiotics described above, there are pleuromutilins,52,53 

macrolactones,15,54 and diarylquinolines55,56 which act at the cellular and nuclear level to fight 

bacterial infections. In recent years due to the widespread emergence of resistance, there has been 

a shift towards the use of combination drug therapy. Combined therapy has been more effective in 

the treatment of HIV [Highly Active Anti-Retroviral Therapy (HAART)] and in treatment of M. 

tuberculosis to combat resistance.57 An overview of different antibiotic classes and their mode of 

action is illustrated in Figures 3-21 and 3-22. 
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Figure 3-21. An overview of different classes of antibiotics according to their mode of action 
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Figure 3-22. An overview of different classes of antibiotics (Credit: www.compoundchem.com)
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3.2. TUBERCULOSIS 

 Tuberculosis is one of the most significant diseases prevailing even today and is fatal to 

millions of people each year.58 In 2015, there were 1.4 million deaths worldwide due to TB, and 

also the reason for the death of 0.4 million TB infected people living with HIV [World Health 

Organization (WHO)]. According to the WHO, in 2015 there were 10.4 million new cases of TB 

worldwide; of these nearly 6 million were men who accounted for 56 %, followed by 3.5million 

women (34%) and the rest were children. The Sustainable goals (SDGs) and WHO’s End TB 

strategy now targets the reduction of the global burden of TB infections during the time period 

2016-2035. This strategy targets a 35% reduction in deaths from TB and a 20% reduction in the 

new TB cases by 2020. 

 

Figure 3-23. Microscopic structure of Mycobacterium tuberculosis cell wall 
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 Tuberculosis is caused by Mycobacterium tuberculosis, a rod-shaped non-spore-forming 

bacterium. These are acid-fast bacilli with a distinct cell wall that plays a major role in its survival. 

The cell wall contains mycolic acid attached to an underlying peptidoglycan layer, bound to a 

polysaccharide arabinogalactan that provides an extraordinary lipid layer. This unique feature of 

the cell wall accounts for most of the bacterial virulence, growth, and resistance.59 

Lipoarabinomannan, the carbohydrate structural antigen is present on the outer side of the bacterial 

cell wall. This lipoarabinomannan is employed to combat immunogenic effects and promote the 

survival of the mycobacteria inside the macrophages (Figure 3-23).60 

 Tuberculosis is an airborne infection. Mycobacterium tuberculosis is transmitted through 

the droplet nuclei as a result of coughing, sneezing, talking or singing of a person infected with 

tuberculosis. The transmission and intensity depend on many factors including the number of 

bacilli in droplets, virulence of bacilli, bacilli exposure to UV light, and degree of ventilation. 

Apart from the lungs, the organism can spread to the lymphatic system, pleura, bones, joints, or 

meninges causing extrapulmonary tuberculosis.60 

3.2.1. Pathophysiology 

 Once a healthy person becomes infected with the droplets containing bacilli, the mucus-

secreting goblet cells in the upper airway tract trap all the bacteria. Mucus catches the foreign 

particles, and the cilia on the outer surface of the cells beat vigorously to remove the entrapped 

particles by expelling upwards.61 This mucociliary system provides the first line of defense to 

prevent people from becoming infected with tuberculosis.62 

 The bacilli which were unaffected by the mucociliary system will find their way to alveoli 

spaces, which contain alveolar macrophages, the abundant immune cells of the air sacs.63 The 

bacteria which entered into the air sacs are surrounded and engulfed by macrophages. 
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Macrophages act as the second line of defense in preventing the invading mycobacteria. The 

phagocytic macrophages engulf the bacilli and several mechanisms involving the surface receptors 

act to prevent the infection.64 The lipoarabinomannan on the cell surface of bacilli serves as a 

ligand for the macrophages that help in the recognition of the mycobacteria.65 The complement 

protein C3 enhances recognition of bacilli by the macrophages and helps in opsonization even if 

it is the first time exposure to the mycobacterium.66,67  

 The cascade events initiated by macrophages either result in the efficient control of 

infection or the active disease progresses to tuberculosis. It also depends on the combination of the 

host defense system and virulence of pathogenic mycobacteria. The preliminary control of TB may 

also lead to latent tuberculosis, recurring after some time span. 

 Once ingested by macrophages the mycobacterium continues to multiply every 25 to 32 

hours. The macrophages produce numerous amounts of proteolytic enzymes and cytokines to 

degenerate the bacilli.64,65 The release of cytokines acts as a site for the attraction of T- 

lymphocytes, which are involved in cell-mediated immunity. Once T-lymphocytes reach the 

infection site, macrophages present the bacterial antigen on their surface to T-Lymphocytes. For 

about 2 to 12 weeks the primary immune responses take place, and bacteria still continue to divide 

inside the macrophages. If these reach high numbers, they can be detected by the skin test (Figure 

3-24).61,64 
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Figure 3-24. Pathophysiology of tuberculosis infection (Credit: http://novicetoexpert.org/book/tuberculosis) 

 Another defensive mechanism in persons with a good immune defense is the formation of 

granulomas around the mycobacterium. These nodular granulomas contain accumulated T-

lymphocytes and macrophages that create a microenvironment to restrict the replication and spread 

of the bacilli.61,65 This microenvironment further kills the macrophages producing the necrotic 

lesion at the center of the granuloma. With the progression of 2-3 weeks, the necrotic tissue further 

softens known as caseous necrosis and this constitutes a low pH, low oxygen supply, and decreased 

nutrients. These conditions lead to the establishment of latency with calcification, and fibrosis 

containing the bacilli in the dormant lesions. In persons with a weak immune system, the formation 

http://novicetoexpert.org/book/tuberculosis
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of the granuloma is not complete leaving the disease active. The latent TB infected person, if 

immunocompromised, the necrotic tissue will become liquefied with the loss of structural integrity 

in the fibrous lesion wall. This damage allows the bacteria to spread to the bronchi, or to the other 

parts of the body through blood vessels which causes the extrapulmonary tuberculosis infection 

(Figure 3-24).68 

3.2.2. Clinical Manifestations 

 Tuberculosis grows in different ways in individuals depending on the cellular process 

progression and immunity system of an infected person. These stages are as follows 

3.2.2.1. Latent Tuberculosis 

 The mycobacterium is enclosed in the fibrous lesion.62 There are no signs or symptoms of 

infection observed. The person does not feel sick and not infectious [Centers for Disease Control 

and Prevention (CDC)].  Once there is a diminished immune response in these individuals or 

coinfection with Human Immunodeficiency Virus, the infection is reactivated. There are other 

conditions such as uncontrolled diabetes mellitus, sepsis, renal failure, malnutrition, smoking, 

chemotherapy, organ transplantation, and long-term steroid use that can also activate the 

infection.68 According to the CDC, the higher incidence of activation of latent TB usually occurs 

in people of old age due to the decreased immune system (Table 3-1).  

3.2.2.2. Primary Disease (active) 

 Due to the spread of the mycobacterium through the lymphatic system, the primary disease 

is characterized by paratracheal lymphadenopathy. The primary disease is associated with pleural 

effusion inducing fever, chest pains, and dyspnea. This stage is detected by diagnostic tests. The 

lack of breathing sounds, due to fluid filled pleural spaces are the physical findings at this stage 

(Table 3-1). 
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Table 3-1. Differences in the stages of tuberculosis 

 

3.2.2.3. Primary Progressive Tuberculosis 

 Only a few individuals develop active tuberculosis when they are exposed to 

mycobacterium bacilli. Progressive fatigue, malaise, weight loss and low-grade fever indicates 

infection. Wasting is the prominent feature that results in the loss of fat and lean muscle.58 A cough 

eventually develops in almost all of the patients. The finger clubbing, which results from poor 

oxygen supply, is the late indication.69 Hemoptysis occurs due to ruptured blood vessels 

characterized by blood streaks in the sputum. The patients are diagnosed with anemia due to 

increased leukocytosis as a response to the infection (Table 3-1). 

3.2.2.4. Extrapulmonary Tuberculosis 

 Although the pulmonary system is the primary target for tuberculosis infection, some cases 

are identified where extrapulmonary organs are infected with bacilli. A few of the fatal conditions 

are meningitis, the spread of bacilli to the brain and miliary tuberculosis infecting the blood stream 

involving multiple organ damage. Other affected locations include bone, joints, and pleura, among 

which lymphatic tuberculosis is the most common.58 
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3.2.3. Treatment for Tuberculosis  

 Even today the treatment of tuberculosis remains challenging, and there is always a demand 

for new drugs for effective treatment.70 The factors such as early diagnosis and screens for drug 

resistance help for primitive detection and immediate treatment.71 The combination of medications 

based on inhibition of acquired resistance and increased efficiency are considered to treat 

mycobacterium. The treatment of TB requires particular attention due to the emergence of Multi-

Drug Resistance TB (MDR-TB) and Extensively Drug Resistance TB strains (XDR-TB).72  

 Streptomycin was the first antibiotic, obtained from Streptomyces griseus, to be proven 

effective against Mycobacterium tuberculosis.73 During treatment with streptomycin, the 

improvement in patient health was seen in the initial three months and gradually deteriorated due 

to the occurrence of streptomycin resistance.70 From the 1950’s onwards several drugs effective 

against tuberculosis were discovered initiating treatment for a duration of 18 months or more. This 

lead (resistance) to the use of combination therapy (Figure 3-27).74,75 Based on the potency, drug 

class, efficiency, application of use, and the TB drugs available, treatments are classified into the 

following classes:  

3.2.3.1. First Line Anti-TB Drugs 

 These drugs are currently prescribed for the four drug combination regimen to treat drug-

susceptible TB. These compounds are taken orally and include isoniazid, which acts by inhibiting 

mycolic acid synthesis by targeting Enolyl-[acyl-carrier-protein] reductase.70 Rifampicin is a 

transcription inhibitor and acts on the beta subunit of RNA polymerase which prevents formation 

of m-RNA.75  The pyrazinamide discovered in 1954, acts on the 30S ribosomal subunit inhibiting 

protein formation by interfering with translation.74 Ethambutol is one of the agents which acts on 
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arabinosyl transferases to prevent the biosynthesis of arabinogalactan in the cell walls of 

mycobacterium (Figure 3-25).  

 

Figure 3-25. First line treatment of TB for Drug Sensitive TB (Credit: NIAID) 

3.2.3.2. Second Line Anti-TB Drugs 

 The second line agents are highly recommended for the treatment of multi-drug resistant 

mycobacteria. These include injectable aminoglycosides and polypeptides such as streptomycin, 

kanamycin, amikacin, and capreomycin, or viomycin, respectively.76,77 The aminoglycosides are 

known to inhibit protein synthesis by targeting the 30S ribosomal subunit.78 The oral and injectable 

fluoroquinolones; ciprofloxacin, levofloxacin, moxifloxacin, ofloxacin, and gatifloxacin also fall 

under this category. The unique mode of action of quinolones is important for inhibiting DNA 

synthesis by acting on DNA gyrase and topoisomerase IV (QuiM). The other drugs such as para-

amino salicylic acid, cycloserine, ethionamide, prothionamide, thioacetazone, and linezolid are 
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also included in second line agents. Para-aminosalicylic acid works by inhibiting folic acid 

synthesis by acting on dihydropteroate synthase.74 Cycloserine acts on D-alanine racemase and 

ligase enzymes to prevent the formation of the peptidoglycan layer of the mycobacterial cell wall 

(Figure 3-26).70 

 

Figure 3-26. Multidrug Resistant Tuberculosis and second line treatments (credit: NIAID) 

3.2.3.3. Third Line Anti-TB Drugs 

 The third line agents are not meant to treat any specific conditions but seem to be effective 

in some cases with undefined roles. These include clofazimine, linezolid, amoxicillin plus 

clavulanate, imipenem plus cilastatin, and clarithromycin.  

 The initial treatment duration time of 18 months or more with the drug cocktail was brought 

down to 9 months with the clinical introduction of rifampicin and even shortened to 6 months with 
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the discovery of pyrazinamide.79 The current regime enjoys a 95 % success rate with six months 

duration with Directly Observed Therapy (DOT). It consists of two phases of intensive and then 

continuous therapy. The initial intensive phase starts with two months of the four drugs: isoniazid, 

rifampicin, pyrazinamide, and ethambutol. The continuous phase after the initial phase consists of 

4 months of isoniazid plus rifampicin.  The mycobacterium in infected persons exists in different 

replication states, metabolically active, relatively rapid replicators, and nearly dormant persisters.80   

Isoniazid acts particularly on early bacterial activity in the initial five days of therapy, and the 

active replicators are killed effectively in the first few weeks. To decrease the emergence of 

resistance and ease of administration the fixed dose combinations of two (isoniazid and 

rifampicin), three (isoniazid, rifampicin, and pyrazinamide) and four (isoniazid, rifampicin, 

pyrazinamide and ethambutol) were developed.81  

 According to the WHO recommendations, the intensive phase to treat MDR-TB should be 

at least eight months, with total treatment duration of 20 months. If the same person has prior 

exposure to multi-drug resistance bacteria, the treatment duration is 28 months.82 To treat MDR-

TB, the regime should contain at least four-second line agents. In the case of XDR-TB, the 

treatment is even longer and requires the third line anti-TB agents. Third-line agents are associated 

with more side effects than others drugs and are also expensive. The XDR-TB is known to be fatal 

in the case of HIV- people infected with tuberculosis.83,84 
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Figure 3-27. Mechanism of action of current tuberculosis drugs (Credit: NIAID) 

3.2.4 Tuberculosis Drugs in the Pipeline  

 There are many challenges to overcome with new drugs to treat TB. Of these, the safety 

profile, potency against MDR-TB, XDR-TB strains, and reduced duration of treatment are the 

most important (Figure 3-28).85 The need for a new regime always exists since this will result in 

less tolerance and decreased drug-drug interactions. There are several potential drug candidates 

currently under investigation in the clinical trial pipeline.86 
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Figure 3-28. Discovery of drugs for tuberculosis 

 

Figure 3-29. Research and development pipeline for new anti-tuberculosis drugs 
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 As seen in Figure 3-29, most of the drugs are in the final stages of Phase 2 and Phase 3 

clinical trials. Based on the data from 2012-2014, the two new drugs bedaquiline and delamanid 

appear to be the best, to date, for MDR-TB, but this must be confirmed. The sutezolid and 

pretomanid which are in Phase 2 and Phase 3, respectively, are new compounds tested principally 

for better hepatic safety issues. Most of the first line agents, the long acting rifampicins, and 

fluoroquinolones are being optimized to further enhance their role in treating drug-susceptible 

bacilli. The SQ109 agent has not shown any anti-TB activity in sputum either alone or combined 

with rifampicin within a duration of 14 days. However, the only reason to advance SQ109 testing 

was to see any pharmacokinetic drug-drug advantage when combined with rifampicin (Figure 3-

30).87  

 In Phase 1, TBA-354 is a nitroimidazole and Q203 is a novel ATP synthetase inhibitor. In 

a study carried out in 39 patients affected by XDR-TB, linezolid has shown efficiency, but high 

toxicity was reported.88 The study is now focused on the toxicity of linezolid without affecting the 

efficiency. The sutezolid, an analog of linezolid, exerts more potent antibacterial activity both in-

vitro and in-vivo studies against non-replicating mycobacteria.48,89  Rifabutin, approved by the 

FDA, is used to treat rpoB mutants of Mycobacterium avium; these mutants are susceptible to 

rifabutin even though resistant to rifampicin.90 Rifabutin has many advantages compared to 

rifampicin due to its decreased ability to induce CYP3A4, making it the best choice to replace 

rifampicin in combination therapy (Figure 3-30).91 
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Figure 3-30. Antitubercular drugs in the pipeline85 

 Clofazimine is an antileprotic drug which possesses both anti-bacterial and anti- 

inflammatory properties. Clofazimine in a study with Balb/c mice92 has shown activity against 

necrotic granulomas.93 Skin discoloration, prolonged QT intervals, pharmacokinetic drug 

interactions are a few possible concerns studied in the case of clofazimine. Based on the in-vitro 

studies and independent case reports, carbapenems also play a role in treating MDR-TB.94  
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Similarly, many other drugs have been screened for activity against Mycobacterium tuberculosis 

(Figure 3-30).  

3.3. Methicillin-Resistant Staphylococcus Aureus (MRSA)   

 MRSA was considered a just born “superbug” in 1961 with the report of the first case in 

the United Kingdom.95 Eventually, MRSA became a significant health concern with a high rate of 

morbidity and mortality. MRSA infections are not confined to any particular area; it is an alarming 

worldwide problem.96 In the United States, itself, the infection and death rates due to MRSA add 

up to more than fatalities than caused by AIDS, viral hepatitis and tuberculosis combined.97,98  

There are two common associated strains of MRSA, the Hospital-acquired MRSA (HA-MRSA)99 

and Community-acquired MRSA (CA-MRSA).97 

 

Figure 3-31. Microscopic structure of Methicillin resistant Staphylococcus aureus bacteria (credit: CNN) 

 Staphylococcus aureus is a gram-positive, non-motile, pus forming bacteria, 

microscopically appearing as grapes when clumped together (Figure 3-31).100 S. aureus is a 

commensal pathogen; the most common inhabitant of the external nares. Other regions of the body 

such as axillae, groin and gastrointestinal track are known to contain colonies of S. aureus.101 
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 With the discovery of penicillin by Alexander Fleming in 1929, most of the staphylococcus 

infections were treated using penicillin.102 S. aureus strains developed resistance to penicillin, 

followed by most of the penicillin derivatives and by 1960’s penicillin resistant staphylococcus 

infections became a pandemic. In 1959, another penicillin derivative methicillin was introduced 

to treat staphylococcus infections.103 However, in 1961 the staphylococcus bacteria were found to 

evolve resistance to methicillin. The term MRSA is applied to strains of Staphylococcus aureus 

that developed resistance to most common antibiotics; they are also resistant to other named 

penicillins and cephalosporins.  

3.3.1. Factors Causing Virulence                                        

 Both the structural components and the secretory substances play a significant role in the 

pathogenicity of Staphylococcus aureus infections. The key surface proteins that are vital for the 

establishment of infection are microbial surface components which recognize adhesive matrix 

molecules (MSCRAMMs). Collagen, fibronectin, fibrinogen of the host tissues are the sensitive 

adhesive surfaces to these proteins. Once attached, these form the source of endovascular 

infections, as well as bone, and joint infections. The composition of MSCRAMMs differ in various 

strains which cause a specific type of infection.104,105  S. aureus has the ability to form a biofilm106  

and small colony variants (SCV)107 which are mainly responsible for the growth and recurrent 

infections. The biofilm or slime provide the surface in which these bacteria reside. This is the 

reason Staphylococcus aureus became the main source for the cause of a major problem in 

infections due to prosthetic devices. The SCV have the ability to hide within host cells which 

protects them from host immune defense mechanisms and antibiotics. As a result, the hidden 

bacteria are the reason for persistent Staphylococcus aureus infections in cystic fibrosis patients 

(Figure 3-32).107,108  
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 During the growth cycle of Staphylococcus aureus, the MSCRAMMs produced in the 

logarithmic phase facilitate the early colonization of bacteria in tissues. The secreted proteins 

during the stationary phase will permit the facile spread of the infection.109  The degree of 

staphylococcus virulence is also attributed to accessory gene regulator (agr) called the quorum 

sensing system. The other gene regulators include staphylococcal accessory regulator110, ArIR and 

ArIS111 , SaeRS112, Rot113, and mgr114.  

 

Figure 3-32. Pathogenic factors of Staphylococcus aureus, with structural and secreted products both play a 

role as virulence factors. A, Surface and secreted proteins. B and C, Cross-sections of the cell envelope. TSST-

1, toxic shock syndrome toxin 1.102 

 Staphylococcus exhibits various mechanisms to protect itself from the host immune system 

such as antiphagocytic microcapsule; a zwitterionic capsule that induces the formation of an 

abscess. To help prevent the opsonization of staphylococcus, the MSCRAMM A protein binds to 

the Fc portion of an antibody.102 The secretory enzymes such as proteases, lipases, elastases help 

bacteria to invade more into the tissues. Staphylococcus induces septic shock by interaction with 
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the host immune system and activation of coagulation pathways. In septic shock, the 

peptidoglycans, lipoteichoic acid and α-toxins are known to play an important role. Leukocidins 

are formed to destroy host leukocytes and toxinoses causing food poisoning and toxic shock 

syndrome.115  

3.3.2. MRSA Infections 

 Because Staphylococcus aureus is a commensal bacterium, this is the reason for many 

invasive infections. These include severe endocarditis seen in immunocompromised patients and 

people with increasing resistance due to over use of antibiotics.112 Respiratory infections such as 

bronchiectasis, cystic fibrosis, and necrotizing pneumonia are increasing these days due to 

MRSA.116 The skin and soft tissue infections are the first identified infections due to MRSA of 

which staphylococcal scalded skin syndrome is life threatening. Acute osteomyelitis and septic 

arthritis are the bone and joint infections which are caused by surgical intervention or by bone 

replacement procedures. Wounds are the primary targets for MRSA, and rare conditions of urinary 

tract infections like urethral meatus and pyelonephritis have been reported.103,117  

3.3.3. Treatment Options for MRSA Infections 

 In considering a treatment for MRSA infections, prevention is more important to minimize 

the spread of the infection. Early screening, identification of carriers, nasal and skin 

decontamination, staff education, enforcement of hand hygiene, and decontamination of patient 

wards are factors considered for effective control. MRSA infections are expanding their territory 

recently including medical devices, faucets, computer keyboards, and stethoscopes. A vaccine 

being developed for MRSA has proven effective in mice. However, its use in humans will await 

extensive testing. Even though Staphylococcus aureus is an encapsulated bacteria the capsule is 

not directly involved in virulence in vivo like other encapsulated Staphylococcus pneumoniae, H. 
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influenzae, and Neisseria meningitides. In contrast, Staphylococcus aureus do not induce 

protective humoral immune responses like other encapsulated bacteria. The main immune 

response to protect from Staphylococcus aureus are phagocytes and T-lymphocytes which enhance 

phagocytic activity, so the antibody antigen mediated neutralization may not be the affective focus 

for the development of a vaccine against Staphylococcus aureus. However, studies to develop a 

vaccine include selection of multiple antigen targets that induce both cell mediated and humoral 

immunity to protect against Staphylococcus aureus. As a result, antigen antibody interactions may 

not help to develop effective vaccines and this still requires more research.118   

 The current antibiotic options for MRSA treatment are limited. Vancomycin has been the 

drug of last resort for many decades for MRSA infections. Vancomycin is given either 

continuously or intermittently. However, the intermittent doses appears to be more efficient. Both 

ways of treatment of MRSA with vancomycin share equally the side effects of nephrotoxicity and 

mortality. Linezolid, the oxazolidinone antibiotic has proven to be effective and the best alternative 

to vancomycin in patients with renal problems.119  

 Daptomycin, derived from Streptomyces roseosporus has been given in parental 

administration for MRSA.  The other novel antibiotics such as glycopeptides, (dalbavancin, 

oritavancin, and telavancin), beta-lactams (ceftobiprole), and are diaminopyrimidines (iclaprim) 

are in the pipeline and possible future drugs for treatment of MRSA infections.120  
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3.4. ANTIBIOTIC RESISTANCE 

 Antibiotics are classified as revolutionary discoveries in medicine and have saved millions 

of lives. At each and every stage there has been the emergence of resistance, followed by its 

discovery within a few years and this has decreased the effectiveness of antibiotics.121  

Sulfonamide resistance Streptococcus pyogenes, penicillin-resistant Staphylococcus aureus, and 

streptomycin-resistant Mycobacterium tuberculosis are a few of the initially identified resistance 

strains reported in hospitals.122 The occurrence of resistance is more common in ESKAPE 

pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acetinobacter 

baumanni, Pseudomonas aeruginosa, and Enterobacter spp.) which cause most lung and urinary 

tract infections.123  

The evolution of resistance is due to many biochemical and genetic factors. The resistance 

mechanism is generally attributed to changes in cell structure and function. The bacterial resistance 

may be intrinsic or acquired due to new encoded genes and vectors of transmission.124 Resistance 

mechanisms to antibiotics include the structural modification of targets, enzymatic inactivation of 

antibiotics, or protection from antibiotics. Mutations in chromosomes allow the bacteria to emerge 

readily as highly resistant organisms (Figure 3-34).  

3.4.1. Origin of Resistance in Bacteria 

 There are a wide variety of mechanisms by which bacteria develop resistance. It can be 

intrinsic or acquired resistance. The inherent resistance is a natural mechanism of bacteria that 

produces genes to evolve resistant strains. This type of protection is seen in bacterial isolates of 

resistance phenotypes to sulfonamides and trimethoprim.125  
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Figure 3-33. The evolution and genetics of bacterial resistance 

 In general there are two different origins of resistance in bacteria, i.e., vertical transfer and 

horizontal transfer. Horizontal transfer is further divided into conjugation, transformation, and 

transduction. Mutations generally occur in vertical transfer during replication of bacteria that are 

transferred to progeny. If this mutation induces a favorable change, the bacteria retain these mutant 

alleles that help in their survival (natural selection). These mutations are spontaneous and occur 

rarely.  

 In horizontal transfer the genetic material is transferred between two different bacteria. The 

uptake of naked DNA from the environment/dead bacterial cell and incorporation into its own 

chromosomal DNA by another bacteria is called transformation. In conjugation, two bacteria 

become adjacent to each other and transfer plasmids (known to contain resistant genes) with the 

help of pili present on outer surface of bacteria. In transduction, the bacteriophage (virus that 

infects bacteria) transfers the genetic material required for resistance from one bacterium to 

another. The transfer of genetic elements such as plasmids, naked DNA, transposons, and 

bacteriophages are responsible for the acquisition of resistance between bacteria of different 

taxonomical classes.  Apart from these, during the course of an infection there are a large number 
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of diverse populations of pathogens. If a single mutation encoding  bacterial resistance to 

antibiotics occurs, these mutants proliferate inside the host leaving the bacteria resistant to 

antibiotics (Figure 3-33).122   

 The tet (M) tetracycline resistant gene is an example of a resistance gene spread through 

transposons126 found in gram positive, gram negative, aerobic, and anaerobic bacteria.127 The DNA 

transformation process created the resistant strains of S. pneumoniae acquired from penicillin-

resistant S. viridans.128 Even the spread of bacteria from person to person is also responsible for 

emergence of resistant strains exemplified by the appearance of progeny strains of resistant 

pneumococci from Spain in Iceland and the Unites States.129                                                  

 In the absence of genetic transfer of antibiotic resistance, the chromosomal mutation is a 

principal source of developing high-level resistance. These include mutations in the target 

enzymes, DNA gyrase and topoisomerase IV, which rendered fluoroquinolones inactive in strains 

of E. coli and Enterobacteriaceae with the expression of additional efflux pumps to pump 

antibiotics to the outside of the bacteria.122,130 There are many ecological, anthropogenic, and 

unknown biological factors which play a crucial role in the development of resistance.  
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3.4.2. Different Mechanisms of Bacterial Resistance 

 

Figure 3-34. Mechanisms of antibiotic resistance strategies in bacteria  

3.4.2.1. Enzymatic and Chemical Modification of a Drug 

 These mechanisms of resistance are generally observed in drugs of natural origin. β-lactam 

antibiotics and aminoglycosides are more susceptible to bacterial enzymes and key chemical 

changes that render the drug inactive.131  

3.4.2.1.a. Inactivation by Hydrolysis  

 The most fundamental mechanism of resistance in β-lactam susceptible organisms is the 

production of the enzyme β-lactamase that inactivates penicillin (Figure 3-35). These β-lactamases 

contain serine residues at the active site and some require metal ion cofactors for activation. These 

are characterized into four classes, Class A, B, C, and D.  Class A, C and D are proteins that contain 

serine residues, and Class B proteins are zinc-dependent metalloenzymes.132 These subclasses of 
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enzymes target different β-lactam antibiotics such as penicillins, cephalosporins, clavams, 

carbapenems, and monobactams. These resistant β-lactamses are found in various species of 

Enterobacteriaceae, Pseudomonas, Acetinobacter, and Aeromonas genus (Figure 3-36).124,133  

 

Figure 3-35. Penicillin inactivation by β-lactamase 
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Figure 3-36. Enzymatic and chemical modification. a. A susceptible host with a target that is efficiently 

inhibited by an antibiotic. b. Acquisition and production of enzymes that destroy the antibiotic preventing 

binding to the target. c. Acquisition and production of enzymes that modify the structure of the antibiotic can 

also prevent binding to the target. 

3.4.2.1.b. Chemical Modification of the Antibiotic 

 Aminoglycoside antibiotics are large chemical compounds which render them more 

susceptible to chemical modifications. There can be a transfer of acetyl, phosphate, nucleotidyl, 

and ribitoyl groups onto the aminoglycoside antibiotics making them sterically hindered at the 

target site.134 There are three classes of modifying enzymes, acetyltransferases, 

phosphotransferases, and nucleotidyl transferases that alter the structure of the specific type and 

particular location on aminoglycosidic antibiotics. A recent phenomenon observed with the 

campylobacter infections was the encoding of six modifying enzymes that made it resistant even 
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to gentamicin.124 The resistance in Actinomycetes species associated with RAE (rif-associated-

element) is due to phosphotransferases (Figure 3-36).135  

3.4.2.2. Prevention of Access to the Target by Efflux Pump Mechanisms 

 The drug access to a target can be reduced by decreased permeability or the increased 

number of efflux pumps. The bacterial cell wall in gram-negative bacteria acts as a real barrier for 

the incoming antibiotics, as compared to that of wall in gram-positive bacteria. In 

Enterobacteriaceae, the outer membrane proteins, called porins OmpF and OmpC are known to 

be involved in the transport of drug. In these bacteria the resistance that evolved was due to greater 

expression of selective channels rather than porins to reduce cell permeability of the outer 

membrane and limit the antibiotic entry into the cell.136,137 The carbapenems in Pseudomonas 

species and Acetinobacter species are inactivated due to reduction in porin expression, which 

usually helps in transport of the drug into the cell irrespective of the carbapenemase production 

mechanism (Figure 3-34).138  

 The efflux mechanism is the removal of the antibiotic from the cell with the help of efflux 

pumps (proteins) on the surface.139 Gram-negative bacteria show overexpressed efflux proteins 

that alter the substrate specificity. These provide resistance to many drugs known as Multidrug 

resistance (MDR) efflux pumps in Streptococcus mutans, Stenotropomonas maltophilia, and K. 

Pneumoniae. There are five families of efflux proteins of which, the RND (resistance nodulation 

cell division) are more prevalent in gram-negative bacteria. The RND systems consist of a cell 

membrane-spanning pump, outer membrane pore and connecting periplasmic adapter protein 

distributed in Escherichia coli and Pseudomonas aeruginosa.140 In MDR-TB, the TetR family 

transcriptional repressor Rv1219c gene induce the increased expression of the ABC family of 

transporters Rv1217c- Rv1218c responsible for the outflow of isoniazid and rifampicin.  
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3.4.2.3. Alteration of Molecular Target by Mutation 

 The modification of the target by a mutation is the more prominent and efficient method 

of resistance.139 Variations in the target structure prevent the attachment of antibiotics, thus 

enabling the proper processing of pathogens. Mutation of the gene that codes the antibiotic target 

is the principal reason for resistance. In the case of linezolid, the antibiotic target 23SrRNA is 

coded by multiple copies of a gene. The clinical applications of linezolid have shown resistance in 

S. pneumoniae and S. aureus because of mutation in one of these gene copies that favored 

recombination at higher frequencies between homologous alleles, which produced populations 

carrying mutant alleles resistant to antibiotics (Figure 3-37).124  

 The uptake of naked DNA through transformation and recombination between bacteria of 

closely related species form the mosaic genes. The transformation of mosaic penicillin binding 

protein genes from Streptococcus mitis to Streptococcus pneumoniae encode penicillin insensitive 

enzymes that cause resistance to penicillin antibiotics in Streptococcus pneumoniae.141 Another 

mechanism is the acquisition of homologous genes from another bacteria that encode the antibiotic 

target. This mechanism is seen in MRSA, where MRSA acquires staphylococcal cassette 

chromosome mec (SCCmec) gene. This gene encodes for β-lactam insensitive proteins that allow 

the cell wall bio-synthesis in MRSA, even though native penicillin binding proteins are inhibited 

by antibiotics.142 
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Figure 3-37. Alteration of molecular target. a. A susceptible host in which an antibiotic is able to bind tightly 

to its specific target and exert an inhibitory effect. b. Mutation of the target site or recombination of mosaic 

allele results in a functional target with reduced affinity for the antibiotics. c. Modification of target by addition 

of a chemical group can also prevent the antibiotic binding without altering the primary protein sequence of 

the target. 

3.4.2.4. Target Site Protection 

 The modification of a target site provides resistance without the involvement of a mutation. 

This mechanism is observed in many antibiotics such as macrolides, lincosamides, and 

streptogramins due to methylation of the 16S rRNA by an erythromycin ribosome methylase 

(erm).143 The methylation of the A2503 site in the 23S rRNA by chloramphenicol florfenicol 

resistance methyltransferase (cfr) renders pleuromutilins, streptogramins, phenicols, and 

oxazolidinones inactive.144 The plasmids carrying erm and cfr genes act as vectors for the transfer 
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of resistance between many organisms by conjugation.145 The methylation of the ribosome by 

methyltransferase encoded by the armA gene is one of the reasons for development of resistance 

to aminoglycoside antibiotics by Enterobacteriaceae (Figure 3-37).146                                        

 A unique mechanism of resistance to quinolone antibiotics was observed with qnr genes 

encoding for pentapeptide repeat proteins that safeguard topoisomerase IV and DNA gyrase.147 

The polymyxins are the lipopolysaccharide (LPS) binding antibiotics which disrupt the cell wall 

biosynthesis in gram-negative bacteria. The specific binding to LPS is based on high affinity of 

the hydrophobic tails of polymixin antibiotics. The resistance to these antibiotics is developed by 

expression of regulators which affect the LPS production that results in alteration of target and 

reduced binding making an unsuitable binding target.148 Daptomycin targets anionic phospholipids 

in the cytoplasmic membrane of gram-positive bacteria and in the presence of calcium ions it 

causes depolarization and loss of intracellular contents. In S. aureus, a point mutation in   the mprF 

(multiple peptide resistance factor) gene, encodes, a protein that decorates anionic phospholipid 

phosphatidylglycerol with L-Lys, which results in a change in phospholipid contents. This in turn 

changes the membrane polarity and phospholipid composition that reduces the binding of 

daptomycin.149 Furthermore, in the case of sulfonamide-resistance, the bacteria do not require 

para-aminobenzoic acid (PABA), an important precursor for the synthesis of folic acid and nucleic 

acids in bacteria inhibited by sulfonamides. Instead, like mammalian cells, they turn to use 

preformed folic acid (alteration of metabolic pathway/by pass). An overview of different antibiotic 

targets and resistant mechanisms can be seen in Figure 3-38.150  

 

 



www.manaraa.com

 

 

 

1
6

5
 

 

 

Figure 3-38. Antibiotic targets and mechanisms of resistance 
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CHAPTER 4 

DESIGN AND SYNTHESIS OF NOVEL ANTIMICROBIALS WITH 

ACTIVITY AGAINST GRAM-POSITIVE BACTERIA AND 

MYCOBACTERIAL SPECIES, INCLUDING M. TUBERCULOSIS 

4.1. ABSTRACT  

 The alarming increase in bacterial resistance over the last decade along with a dramatic 

decrease in new treatments for infections has led to problems in the healthcare industry. 

Tuberculosis (TB) is caused mainly by Mycobacterium tuberculosis which is responsible for 1.4 

million deaths per year. A world-wide threat with HIV co-infected with multi and extensively 

drug-resistant strains of TB has emerged. In this regard, herein, novel acrylic acid ethyl ester 

derivatives were synthesized in simple, efficient routes and evaluated as potential agents against 

several Mycobacterium species. These were synthesized via a stereospecific process for structure 

activity relationship (SAR) studies. Minimum inhibitory concentration (MIC) assays indicated that 

esters 12, 13, and 20 exhibited greater in vitro activity against Mycobacterium smegmatis than 

rifampin, one of the current, first-line anti-mycobacterial chemotherapeutic agents. Based on these 

studies the acrylic ester 20 has been developed as a potential lead compound which was found to 

have an MIC value of 0.4 µg/mL against Mycobacterium tuberculosis. The SAR and biological 

activity of this series is presented; a Michael – acceptor mechanism appears to be important for 

potent activity of this series of analogs. 

4.2. INTRODUCTION 

Surprisingly, tuberculosis (TB) is the second leading lethal infectious disease in the world, 

following human immunodeficiency virus (HIV). According to a recent global tuberculosis report 
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by the World Health Organization (WHO), TB caused 1.4 million deaths in 2011 and 9 million 

newly infected cases are reported each year.1 TB is a bacterial infection caused by the acid-fast 

bacillus M. tuberculosis. TB mainly infects the lungs (pulmonary TB), although it can affect most 

organs in the body (extra pulmonary TB) including the liver, brain and kidney.2 The traditional 

current first-line treatment of drug-sensitive TB infections consists of a four-drug regimen that 

includes rifampin, isoniazid, pyrazinamide, and ethambutol.3-4 This treatment requires a minimum 

of six months to be effective.5 Due to the extended time course of treatment many patients stop 

taking the medication as soon as their symptoms decrease long before the infection has been 

eradicated, allowing the bacteria to develop drug resistance. This potentially leads to multidrug-

resistant (MDR) and extensively drug-resistant (XDR) forms of TB. Treatment of these infections 

may extend to 18-20 months.2 The ability to treat TB is further confounded by co-infection with 

HIV leading to treatment failures as well as a rise in transmission rates and mortality due to TB. 

Without improvements one billion people will be newly infected, there will be around 125 million 

people get sick, and 14 million will die in the next ten years.6-11 Consequently, the development of 

new chemotherapeutic combinations for TB that eradicate the disease quicker as well as are less 

complex, cheaper and have fewer side effects are essential for the future. 

In our continued efforts to develop new anti-mycobacterial agents, a novel class of acrylic 

esters was synthesized.12-14 In early efforts to increase the molecular diversity in this series of 

antimicrobial agents, certain acrylic acid ethyl esters such as 1 were synthesized.15a This initial 

lead compound exhibited a promising MIC of 16 µg/mL against M. smegmatis, a safer surrogate 

of the clinically significant TB causing mycobacteria. Consequently, 1 was assayed against the 

more virulent strain, M. tuberculosis, resulting in an MIC value of 25 µg/mL.12    
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Figure 4-1. Lead Compounds 

4.3. RESULTS 

The structure-activity relationship (SAR) study of lead compound 1 provided valuable 

information regarding the basic structural requirements for anti-mycobacterial activity. In addition, 

manipulations of the basic unit led to increased potency and stability.15b In order to evaluate the 

effect of structural changes on anti-mycobacterial activity, the esters of 1 at positions A, B, C, and 

D were altered. First, in order to increase the hydrophobic interactions of ester 1 with bacteria the 

ethyl ester was replaced with a methyl cyclopropyl ester to give 4 (Scheme 4-1) at position D in 

1. To increase the stability as well as the water solubility of the ester 1, the acids 2 and 3 (Scheme 

4-1) were prepared. This increased the hydrophilic character of the molecule and the CLoP value 

went from 5.7 to 4.7 in agreement with Lipinski’s rules and the classic QSAR studies of Hansch.16 

Various amides (5-11) were synthesized to increase stability and to evaluate steric and electronic 

effects on the bioavailability and potency (Scheme 4-1) of 1. 
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Scheme 4-1.  Synthesis of cis acrylic acids, amides and esters 

 

 

Figure 4-2. ORTEP view of the crystal structure of acrylic acid 2 

Further SAR studies on these compounds were carried out with ligands which contained 

similar functionality. Hence, the sulfur atom in 1 was replaced with the keto group at position B 

to furnish ketones 12 and 13 (Scheme 4-2).17 This altered the electronic character of the double 
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bond of analog 1. These 4-oxo substituted acrylic esters exhibited increased activity against M. 

smegmatis and M. tuberculosis (see Tables 4-1 and 4-2).  

 
Scheme 4-2. Synthesis of 4-oxo substituted acrylic acid ethyl estersa 

a Z and E isomers were separated by flash chromatography on silica gel. 
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Table 4-1. Minimum inhibitory concentrations (MIC) of acrylic acid ethyl ester analogs against common 

bacterial species (µg/mL)  

Compound M. smegmatis S. aureus ATCC 

29213 

B.cereus E. coli ATCC 

29522 

1 16 >128 >128 >128 

2 >128 >128 128 >128 

3 >128 >128     >128 >128 

4 16 >128 128 >128 

5 >128 >128 >128 >128 

6 >128 >128 >128 >128 

7 32 >128 >128 >128 

8 >128 >128 128 >128 

9 64 >128 16 >128 

10 64 >128 >128 >128 

11 >128 >128 >128 >128 

12 8 4 8 >128 

13 8 2 4 >128 

14 >128 >128 NDb >128 

15 64 >128 NDb >128 

16 >128 32 NDb >128 

17 >128 0.5 NDb >128 

18 >128 16 NDb >128 

19 >128 >128 NDb >128 

20 4 1 NDb 128 

24 >128 >128 >128 >128 

25 >128 >128 >128 >128 

28 16 64 NDb >128 

29 128 32 NDb >128 

tetracyclinea   NDb 0.25 NDb 1 

rifampina 64 NDb NDb NDb 

a Positive control 
b ND = Not determined  
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Table 4-2. Minimum inhibitory concentrations (MIC) of select compounds against additional mycobacterial 

species (µg/mL) 

Compound M. 

tuberculosis 

M. 

fortuitum 

M. 

kansasii 

M. 

chelonae 

M. 

avium 

M. 

intracellulare 

12   0.8   8 64 16 32  8 

13   0.8   4 32   8 16  4 

14   NDb   >128   >128   >128   >128   >128 

15   NDb 32 128 32 >128 >128 

16 NDb >125 NDb NDb NDb NDb 

17   NDb 64 >128 32 >128 >128 

18   NDb >128 >128 >128 >128 >128 

19   NDb >128 >128 >128 >128 >128 

20   0.4 16   8   8 16  4 

24   NDb >128 >128 >128 >128 >128 

25   NDb >128 >128 >128 >128 >128 

28 NDb 64 NDb NDb NDb NDb 

29 NDb >128 NDb NDb NDb NDb 

ethambutola 1.2 NDb NDb NDb NDb   NDb 

isoniazida 0.25 NDb NDb NDb NDb   NDb 

rifampina <0.03 32 0.5 32 2 1 
a Positive controls 
b ND = Not determined  

Presumably, the trans ester 13 is more stable in vivo than the cis ester 12. Accordingly, a 

series of analogs were prepared to study the importance of the double bond in regard to the 

increased potency of 13. To evaluate the importance of the electronic character of the double bond 

in keto ester 13, the saturated compounds 14 and 15 (Scheme 4-3) were synthesized as well as 19, 

28, and 29, with a benzene, cyclopropyl and epoxide ring in place of the double bond, as illustrated 

in Scheme 4-4. To increase the hydrophobic character of the molecule 13, a prenyl group was 

substituted for the ethyl function (see reference 31 for a precedent) to provide alkyl ester 17 

(Scheme 4-3). The hydrogen bond acceptor properties of the olefin in 13 were decreased via 

synthesis of an α,β-unsaturated ester 18 (Scheme 4-4).  To alter both the geometry of the molecule 

and the Michael acceptor properties, the alkyne 25 was synthesized (Scheme 4-4). It is well-known 

that acetylenic ketones do not undergo Michael additions, as rapidly as olefinic ketones or esters.18-

21 
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Scheme 4-3. Synthesis of acrylic acid ester derivatives 

 
         

 

Scheme 4-4. Synthesis of acrylic acid ethyl ester derivatives 
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4.4. CHEMISTRY 

To study the SAR and establish the pharmacophoric unit of 1, as mentioned earlier, the 

molecule was divided into four areas A, B, C, and D (Figure 4-1). To alter area D, the two esters 

represented by structure 1 were saponified to provide the corresponding carboxylic acids 2 and 3 

in excellent yields (91 and 92%), respectively, using an aqueous solution of 20% KOH (Scheme 

4-1). The stereochemistry of acid 2 was assigned by 1H NMR. The characteristic olefinic 

hydrogens appeared with a value of the coupling constant of 10.1 Hz and were readily correlated 

with the cis isomer with the help of the available literature on acrylic esters and also confirmed by 

X-ray crystallographic analysis (Figure 4-2).15a, 22-23 In the case of acid 3, the starting moiety in 

area A had been altered from t-butyl benzene to benzothiazole.  Due to the presence of the keto 

group adjacent to the double bond in keto ester 13, a similar hydrolysis reaction was attempted 

with 20% KOH but resulted in the disappearance of the alkene protons. The hydrolysis conditions 

were modified and 16 was prepared from keto ester 13 in 90% yield using K2CO3 in refluxing 

aqueous methanol, as illustrated in Scheme 4-3. The cyclopropyl methyl ester 4 was prepared from 

the acid using thionyl chloride and then addition of cyclopropylmethyl alcohol in excellent yield 

93% (Scheme 4-1).  

Additional alteration of the ester moiety in 1 (area D) was accomplished using 

carbonyldiimidazole (CDI) and the corresponding amines in toluene at 60 °C giving amides 5-11 

(Scheme 4-1) in good to excellent yields 88-93%.  The SAR of area B of 1 was explored by 

introduction of the keto group in place of the sulphur atom in 1 to furnish ketones 12 and 13 

(individually). In order to do this the 4-hydroxy-2-alkynoates 26 and 27 were prepared first by the 

addition of n-butyllithium to propynoic acid ethyl ester at low temperature -78 °C  and the alkynic 

anion, which resulted, rapidly added to the corresponding aldehydes (Scheme 4-2) in 58-60% 
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yield.24 Treatment with sodium bicarbonate as a catalyst for the required isomerization gave a 

mixture of cis and trans isomers 12 and 13 (9:1) which were readily separated by flash column 

chromatography (overall yield 70%). Treatment of the mixture of 12 and 13 with anhydrous 

HCl(g) in ether gave complete conversion of cis 12 into trans 13 in excellent yield. In the presence 

of the benzothiophene heterocyclic ring in 20, the yield decreased to 60% (Scheme 4-2).25  

Alteration of area C of 13 from alkene to alkane was slightly more challenging. The classic 

route using Pd/C in EtOH with hydrogen gas (pressure at 20 psi) furnished saturated analog 15 

instead of the desired ketone 14 because the ketone was both benzylic and allylic. However, the 

reduction procedure of trans ester 13 with TiCl3
26

 gave ketone 14 in good yield 85% (Scheme 4-

3). In the case of thioalkyl 24, the standard Pd/C (H2) reduction was readily executed (Scheme 4-

4). Prenyl ester 17 was prepared by alkylation of acid 16 with prenyl bromide 22 with cesium 

carbonate as the base in DMF in 85% yield (Scheme 4-3). The synthesis of 25 was accomplished 

using the Dess-Martin reagent on propargylic alcohol 26 in good yield (85%, Scheme 4-4).  The 

α,β-unsaturated analog 18 was synthesized by a Suzuki palladium catalyzed cross coupling 

reaction (Scheme 4-4) with the allylic bromide 23 and the appropriate phenyl boronic acid.27 The 

benzene substituted compound 19 was synthesized using a Friedel-Crafts acylation reaction 

between phthalic anhydride and  p-t-butyl benzene in the presence of a Lewis acid (AlCl3).28 The 

subsequent acid was converted into the ethyl ester with EtOH in the presence of a catalytic amount 

of H2SO4 at 70 °C; activated molecular sieves (MS 4 Å) were used for removal of water. 

Cyclopropanation of 13 to 28 was achieved by the use of dimethylsulfoxonium methylide and 

trans epoxide 29 was prepared by the epoxidation of the trans olefin 13 with alkaline hydrogen 

peroxide.29-30 
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4.5. BIOLOGY 

Structure-activity relationship (SAR) studies based on antimicrobial activity in a standard 

minimum inhibitory concentration (MIC) assay, indicated 42% (10 of 24) of analogs tested showed 

equal (3 of 24) or greater (7 of 24) potency than the positive control rifampin against  M. smegmatis 

(MIC ≤ 64 µg/mL, Table 4-1). Anti-mycobacterial activity of 1 was abolished by alteration of 

position D to a carboxylic acid (see MIC values for 2 and 3). Anti-mycobacterial activity of 1 was 

retained when position D was altered to a cyclopropane (4), however, anti-mycobacterial activity 

was abolished by the larger prenyl group (17). However, 17 showed potent anti-staphylococcal 

activity (MIC = 0.5 µg/mL) which is exciting via another study. An amide in position D either 

abolished (5, 6, 8, and 11) or decreased (7, 9, and 10) anti-mycobacterial activity. 

 At position B, replacement of the sulfur atom with a keto group (12 and 13) doubled the 

potency of 1 and extended the activity to include the Gram-positive species tested. However, 

replacement of the ethyl ester (13) with a carboxylic acid (16) in position D again destroyed anti-

mycobacterial activity although some anti-staphylococcal activity was retained. In the cis keto 

compound 12, replacement of the p-t-butyl phenyl group (12) with a benzo[b]thiophene moiety 

(20) in position A increased antibacterial potency for all bacteria tested except M. fortuitum (Table 

4-2). Saturation of the alkene bond in position C of the keto esters (12 and 13) abolished all 

antibacterial activity (see 14 and 24).  Reduction of the C1 keto function (15) partially restored 

anti-mycobacterial activity. However, anti-mycobacterial activity was again abolished in the 

unsaturated alkene with the C1 keto group fully reduced (18).  When the alkene was replaced by 

either benzene (19) or an alkyne (25) activity was abolished. Whereas, the cyclopropyl analog 28 

showed decreased potency (MIC = 16 µg/mL, Table 4-1) on M. smegmatis and epoxide ester 29 

showed moderate anti-staphylococcal activity but no activity against mycobacterial species. 
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 Of the compounds active against M. smegmatis, the three most potent (12, 13, and 20) were 

also active against both the Gram-positive bacteria tested (Table 4-1) as well as the other 

mycobacterial species that were tested (Table 4-2), including M. tuberculosis. In fact, the in vitro 

sub-µg/mL anti-mycobacterial activity of 12, 13, and 20 against M. tuberculosis indicated an 

increase in potency over the lead compound 1 of 32- and 64-fold, respectively.  Furthermore, both 

12 and 13 were 1.5-fold more active than ethambutol against M. tuberculosis, whereas 20 was 3-

fold more potent than this current first line anti-tuberculosis drug.     

4.6. DISCUSSION 

The SAR studies clearly show that the structure of the most potent compounds, 12, 13, and 

20 contain an aromatic ring in area A with a Michael acceptor scaffold in areas B, C, and D. In 

order to study this effect, the saturated analogs (14, 15, 18), prenyl ester 17, benzene compound 

19, keto analog 20, alkyne 25, cyclopropyl ester 28 and epoxide ester 29 were prepared. Alkyne 

25 failed to behave as a Michael acceptor because of the sp character in area C as compared to the 

sp2 character in olefin 13. It is also possible that the geometry of the molecule plays some role in 

activity from sp2 hybridization to sp hybridization.  To mimic the double bond nature of the active 

compound 13, but limit the Michael acceptor properties, the olefin in 13 was replaced by the 

benzene ring in analog 19, cyclopropyl ring in analog 28 and epoxide ring in analog 29. The 

benzene analog 19 was inactive, presumably because the Michael acceptor properties were 

decreased because of resonance stabilization. However, the cyclopropyl ethyl ester 28 

demonstrated weak activity similar to the thio ester 1 on M. smegmatis, whereas epoxide ester 29 

showed moderate activity on S. aureus ATCC29213 (MIC = 32 µg/mL, Table 4-1) but no activity 

against mycobacterial species. Saturated analogs 14, 15, and 18, devoid of a keto function, were 

also prepared to examine the importance of the Michael acceptor scaffold (area B-C) for activity. 
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The saturated analogs 14 and 15 were not active and loss of the ketone in olefin 18 completely 

eliminated activity. When the ethyl ester was transformed into the prenyl ester to give the lipophilic 

17, activity against M. smegmatis was completely eliminated, although 17 was nearly as potent 

(MIC = 0.5 µg/mL, Table 4-1) against S. aureus ATCC29213 as compared to the standard 

tetracycline (MIC = 0.25 µg/mL, Table 4-1) which is of interest in other studies.12 It is not clear 

why the prenyl ester is not active since it has been previously demonstrated that hydrophobicity 

was important for very potent activity.31 Since mycolic acid surrounds the mycobacterial cell, it is 

possible that the prenyl group of olefin 17 adheres to the mycolic acid bilayer and does not 

penetrate the cell. Further work to explore this result is required. The methyl cyclopropyl ester 4 

was still active against M. smegmatis (MIC = 16 µg/mL, Table 4-1), but not active on other strains.   

It is clear the Michael acceptor property of the active keto targets 12, 13, and 20 is very 

important.  In support of this, the acrylic ester amides 5-11 were not active, presumably, because 

the Michael acceptor properties of the olefin (area B) were decreased. In modern medicine, many 

Michael acceptors are employed in the clinic including several corticosteroids, antibiotics, antiviral 

and anticancer drugs.32-39 Some Michael acceptor scaffolds have been developed by accident to 

impart structural rigidity, e.g. corticosteroids, while others require Michael acceptors due to the 

desired mechanism of action for some chronic diseases, such as those used in antiviral and 

anticancer therapies. In drug discovery, Michael acceptors are used to trap an active intermediate 

in the biological cycle. One important component of such an intermediate can be a free thiol. An 

example of this can be found in cysteine protease inhibitors, which can be employed to help treat 

and prevent many diseases including emphysema, stroke, viral infections, cancer, Alzheimer’s 

disease, inflammation and arthritis.40-42 Acifran,43 affinin,44 amcinonide,45 betamethasone,46 

dexamethasone,47 are a few examples of Michael acceptor drugs used clinically.  Rifampin is also 
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a Michael acceptor and, as mentioned, is one of the current first line drugs in the tuberculosis 

treatment regimen. These results suggest that Michael acceptor acrylates 12, 13, and 20 could 

potentially be developed into viable anti-mycobacterial agents providing alternatives to current 

front line therapies used in the treatment of TB, MRSA, and other less common infections caused 

by other Mycobacterium species. In unpublished work, Schwan et al. have given mice a 300 mg/kg 

dose of 20 and saw no overt toxic effects, showing that such compounds may not be overtly 

cytotoxic in vivo. Much work must be done to follow up these results and gain a clear 

understanding of the mechanism of action for these extremely active compounds. It is important 

to note that 12, 13, and 20 were not active toward E. coli indicating their mode of action is not an 

indiscriminate interaction with bacteria. 

4.7. CONCLUSION 

 A new series of acrylic acids, including various amides, prenyl and ethyl esters were 

synthesized by simple, cheap and efficient synthetic routes as compared to those agents employed 

in first-line therapies for TB, including rifampin.48-50 Due to their simple, unique, and novel 

scaffold, these analogs have been evaluated and demonstrated antimicrobial activity against a 

range of Gram-positive bacteria including M. smegmatis and the pathogenic M. tuberculosis. Keto 

analogs 12, 13, and 20 exhibited the most potent antimicrobial activity; keto olefins 12 and 13 

demonstrated an 8-fold greater activity against M. smegmatis than rifampin, one of the primary 

anti-mycobacterial agents currently used to treat TB (Table 4-1). Accordingly, 12 and 13 were 

assayed against other, more virulent mycobacteria species, including M. tuberculosis. Both analogs 

exhibited an MIC value of 0.8 µg/mL against M. tuberculosis (Table 4-2), indicating less potency 

than isoniazid (MIC = 0.25 µg/mL, Table 4-2) or rifampin (MIC = <0.03 µg/mL, Table 4-2) but 

greater potency than ethambutol (MIC = 1.2 µg/mL, Table 4-2), all three of which are part of the 
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current first-line drug regimen for TB. Agents which exhibit MIC values of less than 10 µg/mL 

are generally considered clinically significant for further study.51 This activity may signify a new 

mechanism of action for these readily available small molecules. Analog 20 is unique in that it 

exhibits an MIC value of 4 µg/mL against M. smegmatis with 16 fold greater potency than rifampin 

against this strain and at the same time is very potent (1 µg/mL) against  S. aureus ATCC2913. 

The benzothiophene analog 20 exhibited excellent activity against M. tuberculosis with an MIC 

value of 0.4 µg/mL, a 64-fold increase in activity over lead compound 1 and 3-fold increase in 

potency over ethambutol. Although the mechanism of action of the acrylic ethyl esters 12, 13, and 

20 is not known at this time, experiments are underway to see which biochemical pathway (if any) 

in the biogenesis of TB was disrupted. These simple scaffolds warrant further study to treat drug 

resistant antimicrobial strains including those related to M. tuberculosis.52  

These small molecules are easily and inexpensively synthesized, even in multi-gram 

quantities, in comparison to other front-line treatments. Further SAR studies to obtain greater 

potency, in addition to elucidation of the mode of action of the active compounds are ongoing in 

our laboratories. 

4.8. EXPERIMENTAL 

4.8.1. Chemistry 

 All reactions were performed in oven-dried round-bottom flasks under an argon atmosphere 

unless the reaction conditions were supposed to contain water.  Stainless steel syringes were used 

to transfer air-sensitive liquids. Organic solvents were purified when necessary by standard 

methods53 or purchased from Sigma-Aldrich.TM All chemicals purchased from Sigma-AldrichTM 

were employed as is, unless stated otherwise in regard to purification.  Silica gel (Dynamic 

Adsorbents, 230-400 mesh) for flash chromatography was utilized to purify the analogues.  The 
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1H and 13C NMR data were obtained on Bruker Spectrospin 300 MHz and GE 500 MHz 

instruments with chemical shifts in δ (ppm) reported relative to TMS.  The HRMS and GC/MS 

spectral data were determined by the laboratory for mass spectrometry, University of Kansas, 

Lawrence, KS 66045-7582, USA. Melting points were taken on a Stuart melting point apparatus 

SMP3 manufactured by Barloworld Scientific US Ltd. X-ray crystallographic studies were 

performed at the Naval Research Laboratory, Code 6930, Washington, D. C. 20375, USA. 

4.8.1.1. General method for the synthesis of acids 2 and 3 

 To the ester 1 (0.1 mmol) was added 20% aq KOH (20 mL) and the mixture was stirred at 

rt.  The reaction progress was monitored by TLC on a silica gel plate (10% EtOAc in hexane). 

After 6-8 h the starting ester had disappeared on TLC and the mixture was cooled to 0 °C. The 

acid was precipitated from the solution by addition of cold aq 5% hydrochloric acid until the pH 

of the solution reached 1.5-2. The slurry which resulted was allowed to stir for 30 min and the acid 

was filtered off under vacuum.  The acid was dissolved in a saturated aq solution of Na2CO3 (10 

mL) and the aq layer was extracted twice with DCM (15 mL) to remove impurities.  The aq layer 

was cooled to 0 °C while adjusting the pH to 1.5-2. The pure acid precipitated and was filtered and 

dried in the air with yields ranging from 90-92%. 

4.8.1.1.1. (Z)-3-(4-(tert-Butyl)phenyl)thio)acrylic acid (2)   

The general method above was followed using ester 1 (215 mg, 0.1 mmol) which yielded 

171 mg (92%) of acid 2 as a white powder.  1H NMR (300 MHz, CDCl3): δ 7.47-7.40 (m, 5H), 

5.96-5.93 (d, J = 10.1 Hz, 1H), 1.33 (s, 9H); 13C NMR (75 MHz, CDCl3): δ 170.5, 149.1, 146.4, 

132.1, 129.7, 125.4, 112.3, 40.7, 31.1. HRMS (ESI) (M+H)+ calcd. For C13H17O2S: 237.0949; 

Found: 237.0942. 
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4.8.1.1.2. (Z)-3-(Benzo[d]thiazol-2-ylthio)acrylic acid (3)   

 The general method above was followed using benzothiazole acrylic acid ethyl ester (266 

mg, 0.1 mmol) which yielded 215 mg (91%) of acid 3 as an off white powder.  1H NMR (300 

MHz, CDCl3): δ 8.27-8.23 (d, J = 9.75 Hz, 1H), 8.12-8.09 (d, J = 7.5 Hz, 1H), 7.99-7.96 (d, J = 

7.95 Hz, 1H), 7.56 (t, J = 6.12 Hz, 1H), 7.47 (t, J = 7.5 Hz, 1H), 6.30-6.27 (d, J = 9.75 Hz, 1H); 

13C NMR (75 MHz, CDCl3): δ 167.8, 167.6, 152.4, 140.3, 135.4, 127.3, 125.8, 122.7, 121.1, 117.6. 

HRMS (ESI) (M+H)+ calcd. For C10H8NO2S2: 237.9996; Found: 237.9989. 

4.8.1.2. (Z)-Cyclopropylmethyl 3-((4-(tert-butyl)phenyl)thio)acrylate (4) 

To a stirred suspension of the acid 1 (236 mg, 0.1 mmol) in DCM (10 mL) was added 

thionyl chloride (0.1 mL, 0.15 mmol). The reaction mixture was allowed to heat to reflux for 2 h. 

The reaction mixture was cooled to rt and the appropriate alcohol (0.2 mmol) was added with 

stirring. The reaction was again heated at reflux for 2 h.  The reaction progress was monitored by 

TLC (silica gel).  After complete conversion of the starting acid into the ester, the reaction solution 

was cooled to 0 °C and water (5 mL) was added slowly. The reaction mixture was stirred further 

for 15 min and the layers separated. The aq layer was extracted again with DCM (3 x 10 mL). The 

combined organic extracts were washed with brine (2 x 15 mL) and this was followed by cold 

water (10 mL). The organic layer was dried (Na2SO4) and concentrated under vacuum to yield the 

crude ester 4. This material was further purified by flash column chromatography (silica gel). The 

pure ester 4 (270 mg) was obtained in 93% yield as an oil.  1H NMR (300 MHz, CDCl3): δ 7.64-

7.61 (m, 4H), 7.58 (d, J = 10.38 Hz, 1H), 6.11 (d, J = 10.38 Hz, 1H), 4.12 (d, 2H), 1.37 (s, 9H), 

0.91-0.89 (m, 1H), 0.38-0.34 (m, 2H),  0.12-0.07 (m, 2H); 13C NMR (75 MHz, CDCl3): δ 168.1, 

157.7, 141.4, 132.2, 126.4, 117.9, 114.9, 54.2, 34.2, 28.3, 11.3, 2.7.  HRMS (ESI) (M+H)+ calcd. 

For C17H23O2S: 291.1419; Found: 291.1428. 
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4.8.1.3. General method for the synthesis of amides 5-11 

Acid (2 or 3, 0.1 mmol) and toluene (10 mL) were suspended in a clean dry flask. The 

suspension was allowed to stir and warmed to 60 °C under an inert atmosphere.  The CDI (0.178 

g, 0.11 mmol) was then added and the mixture allowed to stir for 15 min which yielded a clear 

solution. The heating was discontinued and the reaction solution was allowed to cool to rt under 

an inert atmosphere. The appropriate amine (0.11 mmol) was dissolved in dry toluene (5 mL) and 

transferred to the reaction flask.  After completion of the addition, the reaction mixture was stirred 

for 15 min at rt. The reaction mixture was then heated to 45-60 °C and this temperature was 

maintained for 3-6 h. The progress of the reaction was followed using TLC (silica gel). On 

completion by analysis of the mixture by TLC, the reaction mixture was cooled to rt and water (5 

mL) was added slowly. The reaction solution was allowed to stir for 10 min and then diluted with 

EtOAc (10 mL). The layers were separated and the aq layer was extracted with EtOAc (2 x 5 mL). 

The combined organic layers were washed with brine (2 x 15 mL). The organic layer was dried 

(Na2SO4) and concentrated under reduced pressure. Further purification was carried out by flash 

column chromatography (silica gel) to yield a pure amide. The yield was typically 88-94% 

depending on the amine. 

4.8.1.3.1. (Z)-3-(Benzo[d]thiazol-2-ylthio)-N,N-diisopropylacrylamide (5)   

The general method above was followed using acid 3 (237 mg, 0.1 mmol) and 

diisopropylamine (111 mg, 0.11 mmol) yielding 285 mg (89%) of amide 5.  1H NMR (300 MHz, 

CDCl3): δ 8.51 (d, J = 9.82 Hz, 1H), 8.12 (d, J = 8.2 Hz, 2H), 7.38 (d, J = 7.8 Hz, 2H), 6.37 (d, J 

= 9.82 Hz, 1H), 3.93 (m, 2H), 1.27 (s, 12H); 13C NMR (75 MHz, CDCl3): δ 161.7, 156.8, 153.0, 

145.3, 136.2, 125.3, 124.9, 121.6, 121.3, 116.8, 47.1, 22.3. HRMS (ESI) (M+H)+ calcd. For 

C16H21N2OS2: 321.1095; Found: 321.1088. 
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4.8.1.3.2. (Z)-3-((4-(tert-butyl)phenyl)thio)-N-phenylacrylamide (6) 

The general method above was followed using acid 2 (236 mg, 0.1 mmol) and aniline (102 

mg, 0.11 mmol) yielding 289.5 mg (93%) of amide 6.  1H NMR (300 MHz, CDCl3): δ 7.69-7.03 

(m, 9H), 7.26 (d, J = 10.17 Hz, 1H), 5.88 (d, J = 10.17 Hz, 1H), 1.29 (s, 9H);  13C NMR (75 MHz, 

CDCl3): δ 169.7, 146.8, 145.1, 134.4, 132.0, 129.6, 129.3, 129.1, 125.6, 125.2, 121.7, 121.1, 112.5, 

39.9, 31.4. HRMS (ESI) (M+H)+ calcd. For C19H22NOS: 312.1422; Found: 312.1411. 

4.8.1.3.3. (Z)-3-((4-(tert-butyl)phenyl)thio)-N-methyl-N-phenylacrylamide (7) 

The general method above was followed using acid 2 (236 mg, 0.1 mmol) and N-

methylaniline (118 mg, 0.11 mmol) yielding 296 mg (91%) of amide 7.  1H NMR (300 MHz, 

CDCl3): δ 7.61-7.00 (m, 9H), 7.28 (d, J = 10.05 Hz, 1H), 5.90 (d, J = 10.05 Hz, 1H), 2.77 (s, 3H), 

1.29 (s, 9H); 13C NMR (75 MHz, CDCl3): δ 161.7, 148.1, 145.7, 134.2, 132.3, 129.9, 129.4, 129.1, 

125.4, 125.1, 121.7, 121.3, 112.6, 39.2, 31.7, 30.2. HRMS (ESI) (M+H)+ calcd. For C20H24NOS: 

326.1579; Found: 326.1586. 

4.8.1.3.4. (Z)-3-((4-(tert-butyl)phenyl)thio)-N-methylacrylamide (8)   

The general method above was followed using acid 2 (236 mg, 0.1 mmol) and N-

methylamine (34 mg, 0.11 mmol) yielding 220 mg (88%) of amide 8.  1H NMR (300 MHz, 

CDCl3): δ 7.51-7.35 (m, 4H), 7.28 (d, J = 10 Hz, 1H), 5.90 (d, J = 10 Hz, 1H), 2.84 (s, 3H), 1.29 

(s, 9H); 13C NMR (75 MHz, CDCl3): δ 163.9, 151.5, 150.4, 133.7, 131.2, 125.1, 114.5, 60.2, 34.5, 

27.0. HRMS (ESI) (M+H)+ calcd. For C14H20NOS: 250.1266; Found: 250.1259. 

4.8.1.3.5. (Z)-3-((4-(tert-butyl)phenyl)thio)-N,N-dimethylacrylamide (9)   

The general method above was followed using acid 2 (236 mg, 0.1 mmol) and 

dimethylamine (50 mg, 0.11 mmol) which yielded 243.5 mg (92.5%) of amide 9.  1H NMR (300 

MHz, CDCl3): δ 7.67-7.28 (m, 4H), 7.28 (d, J = 10.1 Hz, 1H), 5.90 (d, J = 10.1 Hz, 1H), 2.77 (s, 
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6H), 1.32 (s, 9H); 13C NMR (75 MHz, CDCl3): δ 162.6, 151.2, 150.9, 133.3, 131.7, 125.0, 114.6, 

60.7, 34.1, 27.6. HRMS (ESI) (M+H)+ calcd. For C15H22NOS: 264.1422; Found: 264.1429. 

4.8.1.3.6. (Z)-3-((4-(tert-butyl)phenyl)thio)-N,N-diisopropylacrylamide (10)   

The general method above was followed using acid 2 (236 mg, 0.1 mmol) and 

diisopropylamine (111 mg, 0.11 mmol) which yielded 300 mg (94%) of amide 10.  1H NMR (300 

MHz, CDCl3): δ 7.46-7.39 (m, 4H), δ 7.28 (d, J = 10.1 Hz, 1H), 5.90 (d, J = 10.1 Hz, 1H), 3.93 

(m, 2H), 1.36 (s, 9H), 1.12 (s, 12H); 13C NMR (75 MHz, CDCl3): δ 161.2, 151.4, 150.9, 132.1, 

131.8, 125.3, 114.4, 45.6, 40.7, 34.5, 31.1, 21.4. HRMS (ESI) (M+H)+ calcd. For C19H30NOS: 

320.2048; Found: 320.2040. 

4.8.1.3.7. (Z)-3-((4-(tert-butyl)phenyl)thio)-N-cyclopropylacrylamide (11)   

The general method above was followed using acid 2 (236 mg, 0.1 mmol) and 

cyclopropylamine (63 mg, 0.11 mmol) which yielded 248 mg (90%) of amide 11.  1H NMR (300 

MHz, CDCl3): δ 8.07 (s, 1H), 7.46-7.39 (m, 4H), 7.28 (d, J = 10 Hz, 1H), 5.90 (d, J = 10 Hz, 1H), 

2.32 (m, 1H), 1.56 (s, 9H), 0.38-0.34 (m, 2H), 0.12-0.07 (m, 2H); 13C NMR (75 MHz, CDCl3): δ 

165.4, 146.8, 145.1, 132.0, 129.5, 129.1, 116.7, 40.6, 31.4, 24.2, 7.4. HRMS (ESI) (M+H)+ calcd. 

For C16H22NOS: 276.1422; Found: 276.1424. 

4.8.1.4. General method for the preparation of propargylic alcohols 26 and 27 

 A round bottom flask was charged with anhydrous THF (5 mL) and propynoic acid ethyl 

ester 21 (100 mg, 1.02 mmol) after which it was cooled to -78 ºC. Then n-BuLi (1.6 M of 0.8 mL, 

1.22 mmol) was added dropwise. After the addition the mixture which resulted was stirred for 5 

min and the appropriate aldehyde (1.02 mmol) was added slowly. The solution which resulted was 

stirred for 1 h at -78 ºC and then allowed to warm to rt. The reaction mixture was then quenched 

with a saturated aq solution of NH4Cl, extracted with EtOAc (2 x 10 mL) and then washed with 
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brine. The combined organic extracts were dried (Na2SO4) and concentrated under reduced 

pressure. The crude oil was purified by silica gel flash column chromatography (10 - 20% EtOAc 

in hexanes) to yield pure alcohols.  

4.8.1.4.1. Ethyl 4-(4-(tert-butyl)phenyl)-4-hydroxybut-2-ynoate (26) 

The general method above was followed using t-butyl benzaldehyde (0.17 mL, 1.02 mmol) 

which yielded 169 mg (60%) of alcohol 26.  1H NMR (300 MHz, CDCl3):  δ 7.44 (m, 4H),  5.57 

(s, 1H), 4.24 (q, J = 6.9 Hz, 2H),  1.33 (m , 12H); 13C NMR (75 MHz, CDCl3): δ 153.3, 152.2, 

135.6, 126.5, 125.9, 86.04, 77.2, 64.2, 62.3, 34.7, 31.3, 14.0. HRMS (ESI) (M + Na)+, Calcd. for 

C16H20O3Na: 283.1310; Found: 283.1309.  

4.8.1.4.2. Ethyl 4-(4-(benzo[b]thiophen-2-yl)-4-hydroxybut-2-ynoate (27) 

The general method above was followed using benzothiophene-2-carboxaldehyde (165 

mg, 1.02 mmol) which yielded 154 mg (58%) of alcohol 27.  1H NMR (300 MHz, CDCl3):  δ 7.77 

(m, 2H), 7.40 (s, 1H), 7.36 (m, 2H), 5.85 (d, J = 5.7 Hz, 1H),  4.28 (q, J = 7.2 Hz, 2H),  1.33 (t, J 

= 7.2 Hz, 3H); 13C NMR (75 MHz, CDCl3): δ 155.8, 142.4, 140.1, 139.0, 125.1, 124.7, 124.4, 

124.1, 122.8, 84.2, 77.9, 62.5, 60.9, 14.0. HRMS (ESI) (M + H)+, Calcd. for C14H13O3S: 283.0585; 

Found: 283.0572.  

4.8.1.5. The method for the preparation of enones 12 and 13  

 A round bottom flask was charged with propargylic alcohol 26 (100 mg, 0.3618 mmol), 

DMSO: H2O (8:1; 1.25 mL) and then a solution of 0.01 M of hydroquinone in DMSO (0.36 mL, 

0.0036 mmol) was added at 23 ºC.  Subsequently, solid NaHCO3 (6 mg, 0.0723 mmol) was added 

in one portion. After the addition the solution which resulted was stirred for 18 h at 23 ºC. The 

reaction mixture was then diluted with H2O and brought to pH = 3 [to obtain pH = 3 the phosphate 

buffer which was employed was pH = 7.2 phosphate buffer and an aq solution of HCl (the solution 
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of 1 N HCl was used to reduce the pH = 7.2 to pH = 3)]. The solution which resulted was extracted 

with diethyl ether (2 x 10 mL) and the ether layer washed with brine. The combined organic 

extracts were dried (Na2SO4) and concentrated under reduced pressure. The crude oil was purified 

by silica gel flash column chromatography (5% EtOAc in hexanes) to afford pure cis ester 12 (59 

mg, 63%) and trans ester 13 (6.5 mg, 7%).  Cis ester 12 1H NMR (300 MHz, CDCl3):  δ 7.89 (d,  

J = 8.4 Hz, 2H),  7.50 (d,  J = 8.4 Hz, 2H),  6.89 (d,  J = 12.3 Hz, 1H),  6.27 (d,  J = 12 Hz, 1H),  

4.06 (q,  J =7.2 Hz, 2H),  1.35 (s, 9H),  1.08 (t,  J = 6.9 Hz, 3H); 13C NMR (75 MHz, CDCl3): δ 

189.1, 165.7, 157.8, 136.6, 134.1, 132.2, 128.9, 125.9, 61.3, 35.3, 31.3, 14.2.  HRMS (ESI) (M + 

Na)+, Calcd. for C16H20O3Na 283.1310; Found 283.1334.  Trans ester 13 1H NMR (300 MHz, 

CDCl3): δ 7.96 (d, J = 8.4 Hz, 2H), 7.93 (d, J = 15.6 Hz, 1H), 7.55 (d, J = 8.4 Hz, 2H),  6.90 (d, J 

= 15.6 Hz, 1H),  4.32 (q, J = 7.2 Hz, 2H),  1.38 (m, 12H); 13C NMR (75 MHz, CDCl3): δ 189.0, 

165.6, 157.8, 136.6, 134.1, 132.2, 128.9, 125.8, 61.3, 35.2, 31.0, 14.2.  HRMS (ESI) (M + Na)+, 

Calcd. for C16H20O3Na 283.1310; Found 283.1348. When the mixture of 12 and 13 was stirred 

with anhydrous HCl(g) in ether it was completely converted into trans 13 with no formation of the 

corresponding acid 16. 

4.8.1.6. (Z)-Ethyl 4-(benzo[b]thiophen-2-yl)-4-oxobut-2-enoate (20) 

The procedure (5.6.) was followed.  The mixture of 4-benzo[b]thiophen-2-yl-4-hydroxy-

but-2-ynoic acid ethyl ester 27 (157 mg, 0.6031 mmol), a 0.01 M solution of hydroquinone in 

DMSO (0.6 mL, 0.0060 mmol) and NaHCO3 (10 mg, 0.1206 mmol) in DMSO: H2O (8:1; 2 mL) 

was allowed to stir. Flash column chromatography on silica gel (2% EtOAc in hexane) provided 

enoate 20 (94 mg, 60% yield). 1H NMR (300 MHz, CDCl3):  δ 7.89 (m, 3H),  7.47 (m, 2H),  6.95 

(d,  J = 12.3 Hz, 1H),  6.36 (d,  J = 12 Hz, 1H),  4.12 (q,  J = 6.9 Hz, 2H),  1.14 (t,  J = 7.2 Hz, 

3H); 13C NMR (75 MHz, CDCl3): δ 187.2, 164.8, 143.0, 142.8, 138.9, 138.3, 131.0, 127.8, 127.6, 
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126.2, 125.3, 123.1, 61.3, 13.8.  HRMS (ESI) (M + Na)+, Calcd. for C14H12O3SNa: 283.0405; 

Found: 283.0432. 

4.8.1.7. Ethyl 4-(4-(tert-butyl)phenyl)-4-oxobut-2-ynoate (25) 

To alcohol 26 (0.5 g, 1.8 mmol) in dry CH2Cl2 (10 mL) was added the Dess-Martin 

periodinane reagent (0.77 g, 1.8 mmol) at rt and the reaction mixture was allowed to stir for 2 h. 

The volume of the reaction mixture was increased by the addition of CH2Cl2 (10 mL).  An aq 

solution (20 mL) containing sodium thiosulfate (100 g/L) and sodium bicarbonate (100 g/L) was 

added and the  mixture which resulted was allowed to stir for 10 min The organic phase was 

separated and washed with H2O (30 mL) and dried (Na2SO4). The solvent was removed in vacuo. 

The residue was purified by flash column chromatography on silica gel (10% ethyl acetate in 

hexane) to afford ketone 25 (0.39 g, 85%).  1H NMR (300 MHz, CDCl3): δ 8.07 (d, J = 8.7 Hz, 

2H), 7.55 (d,  J = 8.4 Hz, 2H), 4.37 (q, J = 7.2 Hz, 2H), 1.39 (m, 12H); 13C NMR (75 MHz, CDCl3): 

δ 175.8, 159.4, 152.4, 133.2, 129.8, 125.9, 80.1, 80.0, 62.9, 35.4, 31.0, 13.9.  HRMS (EI) (M)+, 

Calcd. for C16H18O3: 258.1256; Found: 258.1243. 

4.8.1.8. Ethyl 4-(4-(tert-butyl)phenyl)-4-oxobutanoate (14)   

The trans ester 13 (40 mg, 0.153 mmol) was dissolved in acetone (5 mL) and cold 20% 

TiCl3 solution (0.15 ml, 0.306 mmol) was added dropwise with a syringe and the mixture was 

allowed to stir for 10 min at rt. The solution was then poured into brine (20 mL) and extracted with 

diethyl ether (2 x 10 mL). The combined extracts were dried (Na2SO4) and the solvent removed 

under reduced pressure. The crude oil was purified by silica gel flash column chromatography 

(10% EtOAc in hexanes) to afford saturated analog 14 (34 mg, 85%).  1H NMR (300 MHz, CDCl3): 

δ 7.95 (d,  J = 8.4 Hz, 2H), 7.50 (d,  J = 8.4 Hz, 2H), 4.18 (q, J = 7.2 Hz, 2H), 3.31 (t, J = 6.9 Hz, 

2H), 2.77 (t, J = 6.6 Hz, 2H), 1.36 (s, 9H), 1.28 (t, J = 6.9 Hz, 3H); 13C NMR (75 MHz, CDCl3): 
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δ 197.8, 173.0, 156.9, 134.0, 128.0, 125.5, 60.6, 35.1, 33.2, 31.1, 28.3, 14.2.  HRMS (ESI) (M + 

H)+, Calcd. for C16H23O3: 263.1647; Found: 263.1631. 

4.8.1.9. Ethyl 4-(4-(tert-butyl)phenyl)butanoate (15)   

A Parr hydrogenation bottle (50 mL) was charged with dry Pd/C (10% by wt, 400 mg, 0.38 

mmol) and the trans ester 13 (100 mg, 0.38 mmol) in ethanol (3 mL) was added.  The mixture was 

degassed under reduced pressure at rt and back filled with H2 (3 times) and then flushed with H2 

and pressurized to the desired pressure (20 psi) and stirred with H2 overnight at rt. The catalyst 

was removed by filtration (celite) and the solid which remained was washed with ethanol (3 x 10 

mL). The combined organic layers were concentrated under reduced pressure to give an oil. This 

oil was purified by silica gel flash column chromatography (2% EtOAc in hexanes) to afford ester 

15 (76 mg, 80%).  1H NMR (300 MHz, CDCl3): δ 7.33 (d, J = 8.1 Hz, 2H), 7.13 (d, J = 8.1 Hz, 

2H), 4.14 (q, J  = 7.2 Hz, 2H), 2.64 (t, J = 7.5 Hz, 2H), 2.35 (t, J = 7.5 Hz, 2H), 1.97 (m, 2H), 1.33 

(s, 9H), 1.27 (t, J = 7.2 Hz, 3H); 13C NMR (75 MHz, CDCl3): δ 173.6, 148.7, 138.3, 128.1, 125.3, 

60.2, 34.6, 34.4, 33.8, 31.4, 26.5, 14.2.  HRMS (ESI) (M + Na)+, Calcd. for C16H24O2Na: 271.1674; 

Found: 271.1657. 

4.8.1.10. (E)-4-(4-(tert-butyl)phenyl)-4-oxobut-2-enoic acid (16) 

To the trans ester 13 (105 mg, 0.4 mmol) in CH3OH (5 mL) was added K2CO3 (0.279 mg, 

2 mmol) in H2O (5 mL). The reaction mixture was allowed to reflux for 5 h and then the CH3OH 

was removed under reduced pressure. The residue was then cooled to 0 ºC and brought to pH 2 

with a solution of cold aq HCl (1M). The mixture, which resulted, was extracted with diethyl ether 

(2 x 15 mL). The combined  extracts were washed with brine (20 mL), dried (Na2SO4) and 

concentrated under reduced pressure to furnish a pale green solid acid 16 (84.3 mg, 90%).  mp 118 

– 121 ºC.  1H NMR (300 MHz, CDCl3): δ 8.03 (d,  J = 15.6 Hz, 1H), 7.98 (d, J = 7.97 Hz, 2H), 
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7.56 (d, J = 7.97 Hz, 2H), 6.91 (d, J = 15.3 Hz, 2H), 1.38 (S, 9H); 13C NMR (75 MHz, CDCl3): δ 

188.8, 170.5, 158.2, 138.6, 133.8, 131.1, 128.9, 125.9, 35.3, 31.0.  HRMS (ESI) (M + H)+, Calcd. 

for C14H17O3: 233.1178; Found: 233.1155.  This material was employed directly in the next 

experiment. 

4.8.1.11. (E)-3-methylbut-2-en-1-yl 4-(4-(tert-butyl)phenyl)-4-oxobut-2-enoate (17) 

The acid 16 (70 mg, 0.3 mmol) was dissolved in anhydrous DMF (1 mL) and cesium 

carbonate (200 mg, 0.6 mmol) and KI (50 mg, 0.3 mmol) were added. The mixture which resulted 

was stirred for 5 to 10 min at rt and then a solution of 1-bromo-3-methyl-but-2-ene (22) in DMF 

(0.5 mL) was added with a syringe under a positive pressure of argon. After the addition the 

mixture, which resulted, was stirred for 2 h at rt. The reaction mixture was then quenched with 

H2O and extracted with diethyl ether (2 x 10 mL) as well as washed with brine (2 x 30 mL). The 

combined organic extracts were dried (Na2SO4) and concentrated under reduced pressure. The 

crude oil was purified by flash column chromatography (5% EtOAc in hexanes) on silica gel to 

afford prenyl ester 17 (76.5 mg, 85%).  1H NMR (300 MHz, CDCl3): δ 7.96 (d,  J = 7.5 Hz, 2H), 

7.93 (d, J = 15.3 Hz, 1H), 7.54 (d, J = 8.7 Hz, 2H), 6.90 (d, J = 15.6 Hz, 1H), 5.43 (t, J = 7.5 Hz, 

1H), 4.76 (d, J = 7.5 Hz, 2H), 1.79 (d, J = 9.9 Hz, 6H), 1.37 (S, 9H); 13C NMR (75 MHz, CDCl3): 

δ 189.1, 165.7, 157.8, 139.9, 136.6, 134.1, 132.2, 128.9, 125.9, 118.1, 62.2, 35.3, 31.0, 25.8, 18.1.  

HRMS (ESI) (M + Na)+, Calcd. for C19H24O3Na: 323.1623; Found: 323.1627. 

4.8.1.12. (E)-Ethyl 4-(4-(tert-butyl)phenyl)but-2-enoate (18) 

To a solution of ethyl 4-bromocrotonate 23 (0.9 mL, 5.18 mmol) in anhydrous dioxane (10 

mL), palladium triphenyl phosphine tetrakis (300 mg, 0.26 mmol) was added to the round bottom 

flask. The flask was then evacuated three times at rt and backfilled with argon. The reaction 

mixture was allowed to stir for 15 min at rt then phenyl boronic acid (1.84 g, 10.36 mmol) and 
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Na2CO3 (2.75 g, 25.9 mmol) were added under a positive pressure of argon.  The reaction mixture 

which resulted was heated at reflux for 18 h and then cooled to rt. It was then passed through a 

short bed of celite. The celite bed was washed with EtOAc (50 mL) and the combined organic 

layers were washed with water (50 mL) and brine (30 mL). The organic layer was dried (Na2SO4) 

and concentrated under reduced pressure. The crude oil was purified by flash column 

chromatography (5% EtOAc in hexanes) on silica gel to afford ester 18 (893 mg, 70%).  1H NMR 

(300 MHz, CDCl3): δ 7.37 (d,  J = 8.1 Hz, 2H), 7.14 (d, J = 7.8 Hz, 2H), 7.12 (d, J = 15.6 Hz, 1H), 

5.85 (d, J = 15.3 Hz, 1H), 4.21 (q, J = 7.2 Hz, 2H), 3.52 (d, J = 6.9 Hz, 2H), 1.35 (S, 9H), 1.31 (t, 

J = 6.9 Hz, 3H); 13C NMR (75 MHz, CDCl3): δ 166.5, 149.6, 147.5, 134.7, 128.5, 125.6, 122.2, 

60.2, 38.0, 34.4, 31.4, 14.3.  HRMS (ESI) (M + Na)+, Calcd. for C16H22O2Na: 269.1518; Found: 

269.1512. 

4.8.1.13. Ethyl 2-(4-(tert-butyl)benzoyl)benzoate (19) 

A round bottom flask was charged with tert-butyl-benzene (1.04 mL, 6.7 mmol), phthalic 

anhydride (1 g, 6.7 mmol), anhydrous CH2Cl2 (10 mL) and cooled to 10 ºC. Then AlCl3 (1.8 g, 

13.4 mmol) was added portionwise under a positive pressure of argon. The reaction mixture which 

resulted was then stirred for 15 min at 10 ºC. The mixture was poured into an excess of ice-water 

(100 mL) and the aq phase was extracted with CH2Cl2 (2 x 30 mL).  It was then washed with brine 

(50 mL). The organic layer was dried (Na2SO4) and concentrated under reduced pressure to furnish 

an acid (1.62 g, 85%) intermediate. The acid was then dissolved in EtOH (10 mL) and a catalytic 

amount of H2SO4 as well as activated MS (4 Å) were added.  The mixture was allowed to stir for 

6 h. The EtOH was removed under reduced pressure and the residue dissolved in EtOAc (30 mL).  

This organic solution was washed with H2O (50 mL), brine (50 mL), dried (Na2SO4) and 

concentrated under reduced pressure. The crude oil was purified by silica gel flash column 
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chromatography (10% EtOAc in hexanes) to afford the benzoate 19 (1.9 g, 90%). 1H NMR (300 

MHz, CDCl3): δ 8.06 (m, 1H), 7.71 (d, J = 8.4 Hz, 2H), 7.58 (m, 2H), 7.45 (d, J = 8.4 Hz, 2H), 

7.38 (m, 1H), 4.10 (q, J = 6.9 Hz, 2H), 1.33 (S, 9H), 1.06 (t, J = 7.2 Hz, 3H); 13C NMR (75 MHz, 

CDCl3): δ 196.7, 166.0, 156.9, 142.0, 134.6, 132.2, 130.1, 129.4, 127.7, 125.4, 61.4, 35.1, 31.1, 

13.6.  HRMS (ESI) (M + H)+, Calcd. for C20H23O3:  311.1647;  Found: 311.1649. 

4.8.1.14. 3-(4-tert-butyl-phenylsulfanyl)-propionic acid ethyl ester (24) 

The Parr hydrogenation bottle (500 mL) was charged with dry Pd/C (10% by wt, 400 mg, 

0.38 mmol), and  thio ester 1 (100 mg, 0.38 mmol) in ethanol (3 mL).The mixture, which resulted, 

was degassed under reduced pressure at rt and back filled with H2 (3 times) and then flushed with 

H2.  It was pressurized to the desired pressure (20 psi) with H2 and stirred overnight at rt. The 

catalyst was removed by filtration (celite) and washed with ethanol (3 x 10 mL). The solvent was 

removed under reduced pressure. The crude compound was purified by flash column 

chromatography (2% EtOAc in hexanes) on silica gel to afford ester 24 (70 mg, 70%).  1H NMR 

(300 MHz, CDCl3): δ 7.34 (s, 4H), 4.15 (q,  J = 7.2 Hz, 2H),  3.15 (t, J = 7.5 Hz, 2H), 2.63 (t, J = 

7.5 Hz, 2H), 1.33 (s, 9H),  1.27 (t,  J = 6.9 Hz, 3H); 13C NMR (75 MHz, CDCl3): δ 171.9, 150.0, 

131.5, 130.5, 126.1, 60.7, 34.6, 34.5, 31.3, 29.5, 14.2. HRMS (ESI) (M + Na)+, Calcd. for 

C15H22O2SNa: 289.1238; Found: 289.1227. 

4.8.1.15. (1R,2R)-ethyl 2-(4-(tert-butyl)benzoyl)cyclopropanecarboxylate (28) 

Trimethylsulfoxonium iodide (40 mg, 0.18 mmol) was added portionwise to a slurry of 

sodium hydride (5 mg, 0.2 mmol) in DMSO (1 mL). The mixture was stirred at rt until a completely 

clear solution was obtained.  The ester 13 was added dropwise and the reaction mixture was then 

stirred for 14 h at rt.  After completion, the reaction mixture was poured on crushed ice (50 g) and 

the oily product extracted with diethyl ether (2 x 10 mL). The combined organic extracts were 
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washed with brine (2 x 15 mL). The organic layer was dried over MgSO4 and concentrated under 

vacuum to yield the crude cyclopropyl ester. The crude compound was purified by flash column 

chromatography (5% EtOAc in hexanes) on silica gel to afford trans cyclopropyl ester 28 (25.2 

mg, 60%). 1H NMR (300 MHz, CDCl3): δ 7.99 (d,  J = 8.4 Hz, 2H), 7.53 (d,  J = 8.4 Hz, 2H), 4.20 

(q,  J = 7.2 Hz, 2H), 3.20 (ddd,  J = 5.7, 5.7, 9.3 Hz,  1H), 2.37 (ddd,  J = 5.7, 5.7, 9.6 Hz,  1H), 

1.57 (m, 2H), 1.37 (s, 9H), 1.31 (t, J = 7.5 Hz, 3H); 13C NMR (75 MHz, CDCl3): δ 196.6, 172.5, 

157.2, 134.5, 128.3, 125.6, 61.1, 35.2, 31.1, 25.9, 24.5, 17.7, 14.2. HRMS (ESI) (M + H)+, Calcd. 

for C17H23O3: 275.1647; Found: 275.1639. 

4.8.1.16. (2R,3R)-ethyl 3-(4-(tert-butyl)benzoyl)oxirane-2-carboxylate (29) 

A 6 N NaOH (0.1 mL) solution was added dropwise into a solution of 13 (100 mg, 0.38 

mmol) and 30% H2O2 (0.05 mL) in EtOH (5 mL) at 0 ºC. The reaction mixture which resulted, 

was stirred for 2 h at the same temperature after which water was added to the reaction mixture 

and it was extracted with CH2Cl2 (2 x 10 mL).  The combined organic extracts were washed with 

brine (2 x 15 mL). The organic layer was dried (MgSO4) and concentrated under vacuum to yield 

the crude epoxide ethyl ester. The crude compound was purified by flash column chromatography 

(10% EtOAc in hexanes) on silica gel to afford epoxide ethyl ester 29 (55 mg, 52%). 1H NMR 

(300 MHz, CDCl3): δ 7.99 (d,  J = 8.4 Hz, 2H), 7.55 (d,  J = 8.4 Hz, 2H), 4.46 (d,  J = 1.8 Hz, 1H), 

4.32 (m, 2H), 3.70 (d, J = 1.8 Hz, 1H ), 1.38 (m, 12H); 13C NMR (75 MHz, CDCl3): δ 191.3, 

167.31, 158.5, 132.5, 128.6, 126.0, 62.3, 55.2, 53.0, 35.3, 31.0, 14.1. HRMS (ESI) (M + Na)+, 

Calcd. for C16H20O4Na: 299.1259; Found: 299.1248. 
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4.8.2. Microbiology 

4.8.2.1. MIC determinations   

 In vitro minimum inhibitory concentration (MIC) determinations were performed 

according to the Clinical and Laboratory Standards Institute (CLSI) guidelines for Staphylococcus 

aureus ATCC 29213, Bacillus cereus (University of Wisconsin-La Crosse culture collection), and 

Escherichia coli ATCC 29522.54 Tetracycline was used as a control antibiotic and correlated with 

established MIC values.   

 All anti-mycobacterial activity evaluations (except for the M. tuberculosis assays) were 

performed using MIC assays in Middlebrook 7H9 broth with 10% oleic acid albumin dextrose 

complex (OADC) as previously described.12  The following mycobacterial species were  tested: 

M. avium, M. chelonae, M. fortuitum, M. intracellulare and M. kansasii.  All of the mycobacterial 

species that were used were from the University of Wisconsin-La Crosse culture collection.  

Rifampin was used as the positive control for the mycobacterial MICs. All MIC values reported 

were a compilation of the geometric means from three separate runs.    

 For M. tuberculosis MIC determinations, M. tuberculosis strain H37Rv was used.  Briefly, 

black, clear-bottom, 384-well microtiter plates and Middlebrook 7H12 (7H9 broth supplemented 

with 0.1% casitone, 5.6 μg/mL palmitate, 0.5% bovine serum albumin and 4 μg/mL catalase) broth 

were used.  The compounds were diluted in assay media to 2x the final test concentration and 25 

μL of these diluted compounds were transferred to 384-well plates. Amikacin was included in the 

positive control wells in every assay plate.  Plates containing test compounds and positive control 

compounds were transferred into the BSL3 facility for bacteria addition and incubation. The 

bacterial stock was diluted to 1-2 x105 CFU/mL in the assay medium, Middlebrook 7H12 broth 

and 25 μL was plated over the compounds using a Thermo Scientific Matrix WellMate, inside a 
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Class 2A Biological Safety Cabinet. Positive and negative control wells were included in each 

plate. Plates were placed in stacks of two and incubated for 7 days at 37 °C with approximately 

95% humidity. After 7 days of incubation, autofluorescence of any test compounds was determined 

by pre-reading the high dose plate by a bottom read for fluorescence using a Perkin Elmer Envision 

plate reader at 535 nm excitation and 590 nm emission. The assay plates were removed from the 

incubator and allowed to equilibrate to room temperature. Twenty-five microliters of Promega 

BacTiter-Glo™ Microbial Cell Viability (BTG) reagent, one third of the final volume of the well, 

was added using a WellMate. The plates were incubated for 20 minutes at room temperature, 

sealed with a Perkin Elmer clear TopSeal A and read from the top using luminescence on a Perkin 

Elmer Envision.  Rifampin, ethambutol, amikacin, isoniazid, and pyrimethamine were used as 

positive controls. 
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CHAPTER 5 

EXTENSION OF THE SAR AND BIOLOGICAL EVALUATION OF NOVEL 

AROYLACRYLIC ACID DERIVATES AS ANTIMICROBIAL AGENTS 

5.1. BACKGROUND 

 In continued efforts to develop new antimicrobial agents a novel class of aroylacrylic acids 

and corresponding derivatives were synthesized.1 As discussed previously in Chapter 4, the initial 

structure-activity relationship (SAR) studies of the ester 1 resulted in ligand 13 as one of the lead 

compounds, which exhibited a promising minimum inhibitory concentration (MIC) of 8 µg/mL 

and 2 µg/mL against Mycobacterium smegmatis (M. smegmatis), a safer surrogate of the clinically 

significant mycobacteria that causes tuberculosis and gram positive bacteria Staphylococcus 

aureus (S. aureus), respectively, in a testing panel of gram positive, negative, and mycobacterial 

strains. In addition, the ester 13 was screened for the more virulent strain, M. tuberculosis, which 

resulted in a MIC value of 0.8 µg/mL.1 The exciting activity of these compounds has encouraged 

the synthesis of several structurally related derivatives, to study the mode of action and improve 

the antimicrobial activity.  

Figure 5-1. Lead compounds 

5.2. RESULTS AND DISCUSSION 

 Based on the past SAR, the ethyl ester 13 was altered at positions A, B, and C, in order to 

evaluate the structural changes on antimicrobial activity and further develop the SAR to identify 
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the most potent compounds, as shown in Figure 5-1. To assess the size of the lipophilic pocket of 

the bacteria at position C, the ethyl ester function in 13 was replaced with methyl 42, isopropyl 43, 

and t-butyl esters 44, respectively. These various esters were synthesized cheaply because the first 

step was a Friedel-Crafts acylation of t-butyl benzene with maleic anhydride using the Lewis acid 

AlCl3 in dry CH2Cl2 to produce acid 162,3 in nearly quantitative yield. The acid 16 was then 

converted into the corresponding esters by Fischer esterification with the exception of the methyl 

ester 42. The methyl ester 42 was produced from the acid under basic conditions using methyl 

iodide as the alkyl halide, as shown in Scheme 5-1. To further increase the lipophilicity and 

because of the importance of geranyl and farnesyl groups in drug discovery of antibiotics4,5 

because of the lipid membranes which comprise the cell walls, the geranyl and farnesyl esters 46 

and 47 were prepared using Cs2CO3 as a base in good yield. 

 
Scheme 5-1. Synthesis of aroylacrylic acid derivatives 

  It is well-known that triphenyl phosphonium cationic (TPPC) agents target mitochondria 

to induce anti-proliferative and cytotoxic effects in tumor cells without affecting healthy cells.6,7 

In addition, TPPC also plays a vital role in cell wall permeability and accumulation within the cells 
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when attached to small molecules.8,9 As shown in Scheme 5-1, a number of esters were synthesized 

which contained terminal TPPC groups with n=8 (38), n=10 (39), and n=12 (40). The first step in 

the route involved the synthesis of the various bromides 35-37 and they were obtained in good 

yields by treatment of the acid 16 with the corresponding dibromo alkanes in DMF. With the 

desired bromides 35-37 (n = 8, 10, 12) in hand, they were subsequently converted into 

phosphonium salts 38-40 by stirring with triphenyl phosphine in refluxing toluene (70-71% 

yields). Replacement of the t-butyl group in the starting material with a methoxy group at position 

A in 13, followed by the analogous Friedel-Crafts acylation with maleic anhydride gave the ether, 

acid 31 (see Scheme 5-1). This acid was converted into ethyl ester 48 by treatment with ethyl 

iodide under basic conditions. 

 To evaluate the steric, electronic, and lipophilic effects on the potency of these compounds, 

various halogen (Cl, Br, and I) containing analogs 49-51 and 52-54 were prepared by incorporation 

of these halogens at position A. This was accomplished by judicious choice of starting materials 

(Cl, Br, I). These acids were transformed into the ethyl and prenyl esters via the route described 

below employing an established methyl ester 42 protocol. Friedel-Crafts acylation of the 

commercially available halogenated benzenes with maleic anhydride yielded aroylacrylic acids 

32-34, although prolonged reaction times were needed with these halides, as expected. 

Subsequently, the acids were converted into esters 49-51 and 52-54 in dry DMF on treatment with 

ethyl iodide and prenyl bromide, respectively, using Cs2CO3 as the base in good yield. 
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Scheme 5-2. Synthesis of aroylacrylic ethyl ester derivatives 

 In order to increase the hydrogen bond donor number in these agents in agreement with 

Lipinski’s rule of five10, the analogs 41, 58, 61, and 64 were synthesized; these altered the positions 

of 13 at A, B, and C. The analog 41 was readily prepared from the acid 30 by selective esterification 

of the acid with ethyl iodide employing NaHCO3 as a base in DMF at ambient temperature with 

continuous stirring for 14 hours.  As shown in Scheme 5-2, the hydroxy derivative 58 was prepared 

by selective reduction of the ketone function in 13 with KBH4 in MeOH11, this altered the 

electronic character of the double bond. In the case of alcohol 61, the methyl ester 42 (RX, base) 

protocol was followed for one hour, and it should be noted that a longer reaction time was found 

to be detrimental to the reaction yield. The latter trans diol 64 was furnished smoothly from trans 

olefin 63 by stereoselective dihydroxylation using osmium tetroxide (OsO4), and N-

methylmorpholine-N-oxide (NMO) as an oxidant (Dr. Stuart Schreiber) with cis addition to the 

double bond (Scheme 5-4).12 
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Scheme 5-3. Synthesis of aroylacrylic ethyl ester derivatives 

 To further expand the SAR studies on these compounds, the keto function in ester 13 at 

position B was replaced with an amide 56 and an ester 57 (Scheme 5-2) to alter the Michael 

acceptor ability of 13 and to evaluate the effect as well on stability, bioavailability, and potency. 

As illustrated in Scheme 5-2, these derivatives were conveniently obtained by treatment of aniline 

and phenol starting materials with acid chloride 55 under basic conditions. This process was 

carried out in  THF at ambient temperature with stirring for 30 minutes in 86-87% yields. To 

determine if the size of (see A) of the lipophilic pocket in the bacteria would accomadate a longer 

alkyl group, the propargyl ether 59, was prepared. In addition, the propargyl group in the 59 if 

active, would provide the necessary handle for Click chemistry analysis of the proteins involved 

in the MOA (see Chapter 6 for details). The required 59 was obtained by smooth O-alkylation of 

phenol 41 with propargyl bromide in DMF with Cs2CO3 as the base in good yield.  
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Scheme 5-4. Synthetic pathway to compounds 64-66 and 68-69 

 It is well known that CF3 groups play a major role in medicinal chemistry and drug 

discovery.13 The presence of the CF3 group retards metabolism and also alters the electronic 

character of the aromatic ring in region A. To investigate the influence of the CF3 group on 

antibacterial activity in the scaffold 13 at positions C and A, the analogs 45 (triflouro ethyl ester) 

and 60 (4-CF3) were designed and synthesized. The –CH2CF3 ester analog 45 was obtained by 

Fischer esterification of the acid 16 with trifluoroethanol; it is worthy of note that the (RX plus 

base) which gave methyl ester 42 failed when trifluoro ethyl iodide was employed.  

Table 5-1. Minimum inhibitory concentrations (MIC) of compounds 30-31, 35-54, 56-66, and 68-69 against 

common bacterial species (µg/mL) 

Compound M. smegmatis S. aureusa E. faeciuma E. colia P. aeruginosaa 

13 8 2 8 >128 >128 

30 >128 >128 >128 >128 >128 

31 >128 64 >128 >128 >128 

35 >128 8 64 >128 >128 

36 >128 >128 >128 >128 >128 

37 >128 >128 >128 >128 >128 

38 64 0.5 1 32 128 

39 0.25 0.5 4 64 128 

40 16 4 4 >128 >128 
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41 8 1 8 32 >128 

42 NDb 2 16 >128 >128 

43 NDb 4 8 >128 >128 

44 NDb 2 16 >128 >128 

45 4 8 32 >128 >128 

46 >128 0.5 128 >128 >128 

47 >128 128 128 >128 >128 

48 8 2 4 32 >128 

49 16 1 8 32 128 

50 16 0.5 16 32 128 

51 16 1 8 32 128 

52 16 2 8 >128 >128 

53 16 2 8 >128 >128 

54 64 4 8 >128 >128 

56 128 64 128 >128 >128 

57 >128 128 >128 >128 >128 

58 64 8 32 >128 >128 

59 8 0.5 4 32 >128 

60 16 2 8 32 >128 

61 32 1 8 >128 >128 

62 32 2 8 >128 >128 

63 8 0.25 2 16 128 

64 128 32 >128 >128 >128 

65 64 >128 >128 >128 >128 

66 NDb >128 >128 >128 >128 

68 4 4 8 >128 >128 

69 4 16 8 >128 >128 

Rifampinc 16 0.5 NDb NDb NDb 

Tetracyclinec NDb 0.25 16 1 16 
a ATCC strains used for S. aureus, E. faecium, E. coli, P. aeruginosa;  
b ND = not determined, c Positive control 

 Unfortunately, the Friedel-Crafts acylation reaction between trifluorotoluene and maleic 

anhydride failed to give the corresponding acrylic acid; presumbly, the electron withdrawing 

nature of the CF3 substituent remarkably reduced the reactivity of the substrate. The p-

trifluorotoluene acrylic acid was synthesized based on the procedure reported by Xu et al. (Scheme 

5-3).14  The process began by coupling (trifluoromethyl)acetophenone with glyoxylic acid 

monohydrate under acidic conditions to yield the corresponding acrylic acid via the aldol 

condensation, followed by loss of water. This acid was converted into ethyl ester 60 by using ethyl 
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iodide as an alkyl halide under basic conditions to furnish the desired analog 60 in 75% yield, as 

shown in Scheme 5-3. To further mimic the cell wall structure of bacteria, the scaffold 62 was 

designed and synthesized. The diethylphosphate analog 62 was smoothly obtained by treatment of 

alcohol 61 with diethyl chloro phosphate in dichloromethane under basic conditions. This gave 62 

in nearly quantitative yield, however, several attempts at hydrolysis of this ethyl ester 62 failed to 

give the desired alkyl substituted phosphoric acid.   

 As previously reported,1 the activity of these compounds was due to the Michael acceptor 

nature and to design a reversible Michael acceptor the amido nitrile 65 was synthesized.15,16 As 

shown in Scheme 5-4, treatment of benzothiophene carboxaldehyde with cyanoacetamide under 

basic conditions gave the amide 65 in good yield. Replacement of the ethyl ester in 63 with 

bioisosteres17 in a PdCl2/PPh3 mediated process gave the undesired dimer 66; it was a palladium-

catalyzed reaction between 1-(benzo[b]thiophen-2-yl)pro-2-en-1-one and 2-bromo-5-methyl-

1,3,4-oxadiazole in acetonitrile with triphenyl phosphine as the ligand, as depicted in Scheme 5-4. 

Dimer 66 may be product of a radical mediated coupling reaction. Finally, the sulfoxide 68 and 

sulfone 69 were obtained from sulfur analog 67 when the sulfide was reacted with hydrogen 

peroxide and 3-chloroperbenzoic acid (MCPBA) in 72% and 87% yields, respectively.18 The 

sulfoxide 68 is a bioisoster of ester 13 while sulfone 69 is a doubly activated Michael replacement 

for the carbonyl. Caution must be exercised in handling the vinyl sulfones for they are very 

reactive alkylating agents which may blister the skin or damage the lungs. With the desired 

thirty-five new scaffolds in hand, they were tested on a panel of clinically relevant normal and 

resistant bacterial strains to evaluate their antimicrobial activity (MIC). Initially, the acids 30 and 

31 (Scheme 5-1) were tested against common gram positive, gram negative, and Mycobacterium 

strains as shown in Table 5-1. These results were consistent with our previous results1 which 



www.manaraa.com

 

217 

 

indicated that altering the ester functionality to an acid at position C in 13 abolished the activity. 

The ester function clearly lies in a lipophilic pocket. Consequenly a series of esters were evalauted 

with different alkyl chains wherein the aromatic ring (see A) was substituted with electron 

donating groups such as t-butyl, hydroxy, methoxy (35-37, 41-48, 61) and electron withdrawing 

groups such as halogens, and a CF3 group (49-54, 60) at position A. As shown in Table 5-1, 

increasing the length of the alkyl chain from methyl to t-butyl (13, 42-48) at position C was 

tolerated with moderate MIC values; however, antimicrobial activity was abolished on substitution 

by the larger geranyl 46, farnesyl 47, and alkyl bromo analogs 35-37. Interestingly, examination 

of the data on the geranyl ester 46 indicated potent anti-staphylococcal activity with a MIC of 0.5 

µg/mL. The 4-phenolic ester 41 (region A) increased the potency twofold over lead ester 13 and 

the potency was further extended to the gram-negative bacteria E.coli. In the case of analogs 

substituted with electron withdrawing groups (region A) 49-54 and 60 showed similar or potent 

activity and also exhibited greater than four fold activity against E.coli, whereas the iodo prenyl 

ester 54 exhibited less activity than the lead compound 13. This may be the result of the increased 

size of the alkyl iodide which, presumbly, prevented it from establishing a potent interaction with 

the bacteria binding site. Remarkably, the related bromo substituted ester 50 exhibited very potent 

activity against S. aureus with a MIC of 0.5 µg/mL as indicated in Table 5-1. This also suggested 

alkyl iodides are too large for the binding site of S. aureus. The TPPC analogs 38-40 exhibited 

moderate to excellent activity on an array of bacterial strains, especially the alkyl TPPC anlaog 39 

which showed very potent activity against M. smegmatis (MIC = 0.25 µg/mL) and S. aureus (MIC 

= 0.5 µg/mL). This observation stimulated the synthesis of the same length of alkyl chain for 

phosphate ester 62, unfortunately the potency was not retained so the observed differences in 

biological activity must track to other molecular properties. The key here is that alkyl TPPC analog 
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39 was charged; however, alkyl phosphate 62 was not. This is a big difference. Recall the 

hydrolysis of 62 failed. 

 The other region of the molecule examined was at position B in lead compound 13; the 

keto group in ester 13 was replaced with an amide 56, ester 57, and hydroxy 58 functionality and 

tested for antibacterial activity. Since these changes altered the electronic character of the Michael 

acceptor chromophore they decreased activity. This indicated the attack of the bacteria was on the 

enone system at the position beta to the carbonyl not beta to the ester carbonyl. On the other hand, 

the alkyne derivate 59 at C-4 (para, Scheme 5-2) of phenolic ester 41 exhibited four fold more 

potent activity on S. aureus (MIC = 0.5 µg/mL) and E.coli (MIC = 32 µg/mL) when compared to 

lead compound 13 (Table 5-1). This significant result provided a path to study the mechanism of 

action of these novel aroylacrylic ester derivates using Click chemistry (for complete details see 

Chapter 6). The trans ester 63 (Scheme 5-4) was screened for antimicrobial activity, and as 

expected, it was very potent against the S. aureus strain with an MIC value of 0.25 µg/mL. As 

previously described the Michael acceptor property was the key feature for the activity of these 

novel acrylic esters1 and it was again demonstrated with the analogs 64 and 66. Interestingly, the 

structurally unrelated reversible Michael acceptor 65 was not active at all. It simply did not fit the 

receptor pharmacophore (Table 5-1). Furthermore, the Michael acceptor keto replacements 

(sulfoxide 68 and sulfone 69) increased the potency compared to previous lead compound 11, 

however, these ligands exhibited comparable activity with lead compound 13 except they showed 

a two fold increase in potency against M. smegmatis activity compared to ketone ester 13. 
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Table 5-2. Minimum inhibitory concentrations (MIC) of compounds 38-39, 40, 46-48, 56-57, 59, 63-64, 68-69 and single drug-resistant strains against 

Mycobacterium tuberculosis H37Rv; Vero cell line cytotoxicity (IC50 in µg/mL), and selective index (SI) 

 MIC (µg/mL) MIC of single drug-resistant strains (µg/mL) Cytotoxicity (IC50) SI (IC50/MIC) 

compound MABAa LORAa rCSa rINHa rKMa rRMPa rSMa Vero cell  MABAa LORAa 

13 1.20 4.84 1.17 0.73 0.73 1.35 1.39 17.22 14.35 3.6 

38 24.3 >50 NDb NDb NDb NDb NDb NDb NAc NAc 

39 6.2 >50 NDb NDb NDb NDb NDb NDb NAc NAc 

40 20.7 >50 NDb NDb NDb NDb NDb NDb NAc NAc 

46 1.4 40.0 NDb NDb NDb NDb NDb NDb NAc NAc 

48 1.28 5.32 1.49 1.37 1.43 1.50 2.61 18.63 15.0 3.5 

56 >50 >50 NDb NDb NDb NDb NDb >50 NAc NAc 

57 >50 >50 NDb NDb NDb NDb NDb >50 NAc NAc 

59 0.72 6.20 1.48 1.36 1.43 1.59 2.70 19.60 27.2 3.1 

63 0.69 10.35 1.51 1.32 0.74 4.98 1.44 32.58 47.2 3.1 

64 >50 >50 NDb NDb NDb NDb NDb >50 NAc NAc 

68 2.96 2.88 6.06 5.21 5.85 5.60 5.46 17.01 5.7 5.9 

69 5.67 6.00 8.04 3.11 5.78 5.43 5.24 19.87 3.5 3.3 

RMPd 0.03 0.30 < 0.02 < 0.02 < 0.02 > 6.6 0.04 >150 NAc NAc 

INHd 0.03 > 35.1 0.04 > 1.1 0.07 0.10 > 1.1 NDb NAc NAc 

a MABA: microplate alamar blue assay; LORA: low oxygen recovery assay; rCS: resistant to cyclosporine; rINH: resistant to isoniazid; 

rKM: resistant to kanamycin; rRMP: resistant to rifampicin; rSM: resistant to streptomycin; b ND = not determined; c NA = Not applicable; 
dPositive control. 
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Table 5-3. Minimum inhibitory concentrations (MIC) of compounds 38-39, 41, 46, and 59 against clinically 

significant drug resistant strains (µg/mL) 

Resistant straina 38 39 41 46 59 Oxb Vanb Genb Amb Eryb Cipb Tetb 

MC7827 MDR MRSA 

 

1 0.5 2 >128 1 4 1 8 32 >128 >128 32 

MC7769 RifR MRSA 

 

2 0.5 1 >128 0.5 4 1 32 >128 >128 >128 0.5 

MC7606 MDR MRSA 

 

1 0.25 2 >128 1 4 1 16 >128 128 32 64 

MC7846 VISA MRSA 

 

2 0.5 1 >128 0.5 4 4 32 8 >128 128 0.25 

MC7583 MDR MRSA 

 

1 0.25 0.5 >128 0.5 8 1 NDc NDc NDc NDc NDc 

MW2 MRSA 

 

1 0.25 0.25 >128 0.25 8 1 NDc NDc NDc NDc NDc 

VRE 1 NDc NDc 2 >128 2 128 32 128 128 >128 8 4 

VRE 14 NDc NDc 4 >128 4 128 128 128 128 128 64 64 

a MRSA = methicillin-resistant S. aureus, MDR = multi-drug resistant, VISA = vancomycin intermediate- resistant S. aureus; 

VRE = vancomycin resistant enterococci; b positive controls: Ox = oxacillin, Van = vancomycin, Gen = gentamicin, Am = 

ampicillin; Ery = erythromycin, Cip = ciprofloxacin, Tet = tetracycline; c ND = not determined  

 To further evaluate the biological profile of the most potent agents, they were tested for 

MIC values against the more virulent, actively replicating M. tuberculosis H37Rv (Mtb) strain. 

This was carried out by Franzblau et al. at the Institute for Tuberculosis Research, University of 

Illinois at Chicago using the microplate alamar blue assay (MABA)19 and for non-replicating 

(dormant) cultures of Mtb via the low oxygen recovery assay (LORA).20 The in-vitro cytotoxicity 

of these compounds were assessed using the Vero cells (monkey kidney cells), as described 

previously.21 As shown in Table 5-2, TPPC compounds 38-40 did not inhibit the growth of Mtb 

when compared to lead compound 13 and completely abolished the bactericidal activity against 

nonreplicating Mtb and unfortunately, the analog 39 did not retain its previous antimycobacterial 

(MIC = 0.25 µg/mL against M. smegmatis) activity. The activity of inhibition of analogs 56-57 

and 64 was consistent with the above MIC values (Table 5-1). Compared to the  sulfone 69, the 

sulfoxide 68 exhibited two fold more potent antibacterial activity against both replicating and 

dormant Mtb. The sulfoxide is a closer bioisostere to the keto group in 13. The geranyl 46 and 

ethyl ester 48 exhibited similar activity against replicating bacilli in the MABA assay. However 
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the analog 46 was not capable of killing non-replicating Mtb in the LORA assay. Gratifyingly, the 

key ethyl esters 59 and 63 exhibited excellent antitubercular activity on actively replicating 

bacteria with a MIC value of 0.72 µg/mL, and 0.69 µg/mL respectively, whereas these were not 

able to kill effectively, as compared to lead compound 13, in the case of the dormant culture of 

Mtb. But the ethyl esters 59 and 63 exhibited roughly five and three fold greater potency than 

isoniazid against dormant Mtb, which is one of the current first-line drug regimens in the four drug 

cocktail for tuberculosis, as shown in Table 5-2. This result suggested both compounds have 

the potential to decrease the time of six month drug regimen employed in patients today and 

inhibit or retard the bacilli from developing resistance.  

 The most representative compounds were also tested against single drug resistance 

tuberculosis strains (SDRTB) to rule out the possibility of cross-resistance with the commonly 

used chemotherapeutics such as cyclosporine, isoniazid, kanamycin, rifampicin, and streptomycin. 

The lead compounds 59 and 63 exhibited a MIC range of 0.74 µg/mL - 4.98 µg/mL against the 

above SDRTB which implies selective antitubercular activity towards resistant strains. The ethyl 

ester 48 showed activity similar to lead molecule 13 in each of the single drug resistant strains of 

Mtb. In the case of sulfoxide 68 and sulfone 69, the same trend was observed against these 

clinically significant drug resistant strains of virulent Mtb, as shown in Table 5-2. The prominent 

analogs described in Table 5-2 were also evaluated in the safety profile towards Vero cell lines.21 

As shown for lead compounds 59 and 63, the IC50 values are 19.60 µg/mL and 32.58 µg/mL 

respectively. In general, a selective index (IC50/MIC) greater than 10 denotes the measure of a 

valuable lead molecule that can be further optimized to a druggable candidate22, which was true in 

the case of 59 and 63 in MABA. Also, the same pattern was continued for compound 48, however, 
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for the compounds 68 and 69, the SI values fall below ten, as shown in Table 5-2. Unfortunately, 

most of the compounds did not show any significant SI values in the LORA assay. 

 While the initial activity of clinically employed drugs against S. aureus was promising,  

because of emergence of resistant strains, agents which have potential activity against various 

clinically relevant resistant strains is necessary for any new line of antibiotics. The strains tested 

with these analogs include methicillin-resistant S. aureus (MRSA),  multi-drug resistant (MDR) 

MRSA, vancomycin intermediate- resistant S. aureus (VISA), and vancomycin resistant 

enterococci (VRE) with present antibiotics available on the market as positive controls and the 

results are listed in Table 5-3. The geranyl ester 46 was detrimental in its activity against these 

resistant strains, whereas the TPPC analogs 38-39 and the phenolic ester 41 nearly retain their 

level of activity and especially TPPC analog 39, which exhibited greater potency against the above 

tested resistant strains than control antibiotics, as shown in Table 5-3. This is exciting via another 

study. Remarkably, the propargyl ether 59 retained excellent potent antibacterial activity observed 

in the MIC range of 0.25 µg/mL to 4 µg/mL against various resistant strains. This propargyl ether 

59 was several fold more potent than some present day clinical drug candidates on the market with 

the capability of development into a novel antibiotic.  

5.3. CONCLUSION 

 A novel new series of aroylacrylic acid derivatives were designed which contained  various 

functionalities and were prepared by simple, economical, and straight forward synthetic routes as 

compared to some of those first and second line antibiotics in the clinic. This simple chemistry 

permitted a systematic study of the SAR and evaluation against a panel of gram positive, gram 

negative and mycobacteria including Mtb and the corresponding clinically important resistant 

strains. Most notable compounds 59 and 63 exhibited two fold more potent activity against M. 
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smegmatis than rifampin, one of the first line antibiotics for tuberculosis. In addition, both ethyl 

esters 59 and 63 were found to be very potent (MIC = 0.72 and 0.69 µg/mL) against actively 

replicating Mtb and more importantly, scaffolds 59 and 63 exhibited six and four fold greater 

inhibition, respectively, toward nonreplicating persistant (dormant) phenotypes in low oxygen 

conditions than isoniazid; this is essential to decrease duration of tuberculosis treatment from many 

months to less. Further evaluation of these selected analogs 59 and 63 against a panel of single –

drug resistant Mtb strains maintained similar activity as against the wild type with an encouraging 

safety profile with an SI value greater than 10. This suggests these scaffolds act through a different 

mechanism from those of the currently used clinical candidates (see next Chapter for complete 

details) and might not develop resistance. Clinicians all over the world are searching for these 

types of antimicrobials to treat deadly resistant infections. Gratifyingly, the propargyl ether 59 

retained excellent inhibition against a wide variety of virulent antibiotic-resistant clinical isolates 

(MRSA, MDR MRSA, VISA MRSA, and VRE). According to the SAR, it is clear these lead 

candidates act through a Michael acceptor mechanism of action. In modern medicine, Michael 

acceptors are employed to treat chronic illness due to their desired mode of action.23-30 Although 

there is inherent fear in employing Michael acceptors, several classes of drugs include 

corticosteroids, antibiotics, antiviral, and anticancer agents used clinically today (see the Merck 

index for details).31 The structural rigidity and planarity of the Michael acceptor scaffold allows 

them to trap an active intermediate in a biological cycle especially one which contains free thiols.32 

The direct covalent modification of protein thiols by Michael acceptor agents is seen in cysteine 

protease inhibitors used to treat emphysema, stroke, viral infections, cancer, Alzheimer’s disease, 

inflammation, and arthritis.33-35 Rifampin, the first line anti-tubercular drug which has saved 

millions of lives also contains a Michael acceptor unit, however, this is not actively involved in 
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the rifampin mode of action. Taken together, these potential applications and importance of 

Michael acceptor moieties in therapeutic agents suggest these novel acrylic acid ethyl esters 59 

and 63 may be preferred options to present clinical antibiotics because of the efficient synthetic 

routes and ease of scale-up of synthesis. The investigation of ADMET (Absorption, Distribution, 

Metabolism, Excretion, and Toxicity) medicinal chemistry properties of select agents including 

41, 59, and 63 are ongoing in our laboratories. It is felt a promising preclinical candidate related 

to 59 and 63 could evolve into a novel drug molecule in the near future to treat susceptible and 

resistant strains of bacterial infections.  

5.4. EXPERIMENTAL  

 Agents 16, 30-40 were synthesized as described previously in the literature.1,3,6,9 

5.4.1. General procedure for the Friedel-Crafts acylation between substituted benzenes and 

maleic anhydride: Synthesis of aroylacrylic acids 16, 30-34. 

 An oven-dried round bottom flask was charged with maleic anhydride (0.73 g, 7.45 mmol), 

the aromatic substrates (7.45 mmol), anhydrous CH2Cl2, and cooled to 0 °C. Then AlCl3 (14.90 

mmol) was added portionwise under a positive pressure of argon. The reaction mixture which 

resulted was stirred for 15 min at 0 °C and then allowed to warm to rt and stirred for 30 min – 6 h. 

The reaction progress was monitored by TLC (silica gel, 30% EtOAc in hexane).  After the 

disappearance of starting materials, the reaction mixture was poured into an excess of ice water 

and the aq phase was extracted with CH2Cl2. The combined organic extracts were washed with 

brine, dried (Na2SO4), and concentrated under vacuum to yield the crude acid 16, 30-34 (30% - 

99%) as a solid which was used for the next reaction without further purification.  
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5.4.2. General procedure for esterification of aroylacrylic acid: synthesis of aroylacrylic 

esters 13, 42 and 46-54. Representative procedure for the synthesis of ethyl (E)-4-(4-(tert-

butyl)phenyl)-4-oxobut-2-enoate (13) 

 The acid 163 (200 mg, 0.86 mmol) was dissolved in anhydrous DMF (2 mL) and Cs2CO3 

(560 mg, 1.72 mmol) was added at rt under a positive pressure of argon. The reaction mixture 

which resulted was then stirred for 10-15 min after which ethyl iodide (83 µL, 1.03 mmol) was 

added dropwise with a syringe and the mixture stirred for 2 h. The reaction mixture was quenched 

with water (5 mL) and extracted with ethyl acetate (3 × 20 mL). The combined organic layer was 

washed with brine (3 × 50 mL), dried (Na2SO4), and concentrated under vacuum to yield the crude 

ethyl ester 13. This material was further purified by flash column chromatography (silica gel, 10% 

EtOAc in hexane) to yield the ethyl ester 13 as a light yellow colored oil (205 mg, 92%). The 

spectral data for this material were identical to the published values.1  

5.4.2.1. Methyl (E)-4-(4-(tert-butyl)phenyl)-4-oxobut-2-enoate (42) 

 The general method above was followed using the acid 16 (200 mg, 0.86 mmol) with 

methyl iodide (64.2 µL, 0.87 mmol), Cs2CO3 (560 mg, 1.72 mmol) and the mixture stirred for 2 h 

at rt. After flash column chromatography (silica gel, 10% EtOAc in hexane) this yielded the methyl 

ester 42 as a light yellow colored oil (193 mg, 91%). 1H NMR (300 MHz, CDCl3) δ 8.05 – 7.88 

(m, 3H), 7.54 (d, J = 8.4 Hz, 2H), 6.90 (d, J = 15.6 Hz, 1H), 3.86 (s, 3H), 1.37 (s, 9H); 13C NMR 

(75 MHz, CDCl3) δ 188.9, 166.1, 157.9, 136.8, 134.0, 131.7, 128.9, 125.9, 52.3, 35.3, 31.0; HRMS 

(ESI-TOF) (m/z): [M+Na]+ calcd for C15H18O3Na: 269.1154, found: 269.1182. 

5.4.2.2. Methyl (E)-4-(4-hydroxyphenyl)-4-oxobut-2-enoate (41) 

 The general method above was followed using the acid 30 (140 mg, 0.73 mmol) with ethyl 

iodide (58.5 µL, 0.73 mmol), NaHCO3 (67.3 mg, 0.80 mmol) and the mixture stirred for 14 h at 
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rt. After flash column chromatography (silica gel, 30% EtOAc in hexane) this yielded the ester 41 

as an off-white solid (146 mg, 91%); mp: 124-127 °C; 1H NMR (300 MHz, CDCl3) δ 8.00 (d, J = 

8.7 Hz, 2H), 7.93 (d, J = 15.5 Hz, 1H), 6.96 (d, J = 8.8 Hz, 2H), 6.90 (d, J = 15.5 Hz, 1H), 5.57 (s, 

1H), 4.33 (q, J = 7.1 Hz, 2H), 1.37 (t, J = 7.1 Hz, 3H); 13C NMR (75 MHz, CDCl3) δ 188.2, 166.2, 

162.1, 136.8, 131.9, 131.8, 129.1, 115.9, 61.7, 14.1; HRMS (ESI-TOF) (m/z): [M-H]- calcd for 

C12H11O4: 219.0657, found: 219.0632. 

5.4.2.3. (E)-(E)-3,7-Dimethylocta-2,6-dien-1-yl-4-(4-(tert-butyl)phenyl)-4-oxobut-2-enoate 

(46) 

 The general method above was followed using the acid 16 (200 mg, 0.86 mmol) with 

Cs2CO3 (561 mg, 1.72 mmol), KI (142 mg, 0.86 mmol), and geranyl bromide (171 µL, 0.86 mmol) 

and the mixture was stirred for 2 h at rt. After flash column chromatography (silica gel, 10% EtOAc 

in hexane) this yielded the geranyl ester as a light yellow colored oil  46 (265 mg, 82%).1H NMR 

(300 MHz, CDCl3): δ 7.96 (d, J = 7.8 Hz, 2H), 7.93 (d, J =15.6 Hz, 1H), 7.54 (d, J = 8.1 Hz, 2H), 

6.90 (d, J = 15.6 Hz, 1H), 5.44 (t, J = 7.2 Hz, 1H), 5.10 (m, 1H), 4.78 (d, J = 7.2Hz, 2H), 2.12 (m, 

4H), 1.77 (s, 3H), 1.70 (s, 3H), 1.69 (s, 3H), 1.37 (s, 9H); 13C NMR (75 MHz, CDCl3): δ 188.9, 

165.7, 157.7, 143.0, 136.6, 134.1, 132.2, 131.8, 128.9, 125.8, 123.7, 117.8, 62.2, 39.5, 35.2, 31.0, 

26.3, 25.7, 17.7, 16.5; HRMS (EI) (m/z): (M+) calcd for C24H32O3: 368.2351, found: 368.2344. 

5.4.2.4. (E)-(2E,6E)-3,7,11-Trimethyldodeca-2,6,10-trien-1-yl 4-(4-(tert-butyl)phenyl)-4-

oxobut-2-enoate (47) 

 The general method above was followed using the acid 16 (100 mg, 0.43 mmol) with 

Cs2CO3 (281 mg, 0.86 mmol), KI (71 mg, 0.43 mmol), and trans,trans-farnesyl bromide (116 µL, 

0.43 mmol) and the mixture was stirred for 2 h at rt. After flash column chromatography (silica 

gel, 10% EtOAc in hexane) this yielded the farnesyl ester as a light yellow colored oil 47 (154 mg, 
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86%). 1H NMR (300 MHz, CDCl3): δ 7.95 (d, J = 7.8 Hz, 2H), 7.91 (d, J = 15.3 Hz, 1H), 7.52 (d, 

J = 6.0 Hz, 2H),  6.87 (d, J = 15.6 Hz, 1H), 5.42 (t, J = 7.2 Hz, 1H), 5.09 (m, 2H), 4.76 (d, J = 7.2 

Hz, 2H), 2.15-1.97 (m, 8H), 1.75 (s, 3H), 1.67 (s, 3H), 1.60 (s, 3H), 1.59 (s, 3H), 1.35 (s, 9H); 13C 

NMR (75 MHz, CDCl3): δ 189.0, 165.7, 157.8, 143.0, 136.6, 135.5, 134.1, 132.2, 131.3, 128.9, 

125.8, 124.3, 123.5, 117.8, 62.2, 39.7, 39.5, 35.2, 31.0, 26.7, 26.2, 25.7, 17.7, 16.6, 16.0; HRMS 

(ESI-TOF) (M+H)+ calcd for C29H41O3: 437.3056, found: 437.3038. 

5.4.2.5. (E)-3-Methylbut-2-en-1-yl 4-(4-chlorophenyl)-4-oxobut-2-enoate (52) 

 The general method above was followed using the acid 32 (500 mg, 2.37 mmol) with 

Cs2CO3 (1.54 g, 4.743 mmol), KI (393 mg, 2.37 mmol), and prenyl bromide (274 µL, 0.43 mmol) 

and the mixture was stirred for 2 h at rt. After flash column chromatography (silica gel, 10% EtOAc 

in hexane) this yielded the prenyl ester as a greenish yellow colored solid 53 (489 mg, 74%); mp: 

55-56 °C;  1H NMR (300 MHz, CDCl3): δ 7.96 (d, J = 9.0 Hz, 2H), 7.87 (d, J = 15.0 Hz, 1H), 7.50 

(d, J = 9.0 Hz, 2H), 6.91 (d, J = 15.0 Hz, 1H), 5.43 (t, J = 9.0 Hz, 1H), 4.76 (d, J = 6.0 Hz, 2H), 

1.81 (s, 3H), 1.78 (s, 3H); 13C NMR (75 MHz, CDCl3): δ 188.3, 165.4, 140.4, 140.1, 135.8, 134.9, 

133.1, 130.2, 129.2, 117.9, 62.3, 25.8, 18.1; HRMS (APCI-TOF) (m/z): (M+H)+ calcd for 

C15H16O3Cl: 279.0782, found: 279.0782. 

5.4.2.6. (E)-3-Methylbut-2-en-1-yl 4-(4-Bromophenyl)-4-oxobut-2-enoate (53) 

 The general method above was followed using the acid 33 (500 mg, 1.96 mmol) with 

Cs2CO3 (1.28 g, 3.92 mmol), KI (325 mg, 1.96 mmol), prenyl bromide (226 µL, 1.96 mmol) and, 

the mixture was stirred for 2 h at rt. After flash column chromatography (silica gel, 10% EtOAc in 

hexane) this yielded the prenyl ester as a shiny white solid 54 (519 mg, 82%); mp: 60-61 °C; 1H 

NMR (300 MHz, CDCl3): δ 7.87 (d, J = 9.0 Hz, 2H), 7.83 (d, J = 15.0 Hz, 1H), 7.66 (d, J = 9.0 

Hz, 2H), 6.90 (d, J =15.0 Hz, 2H), 5.41 (t, J = 9.0 Hz, 1H), 4.74 (d, J = 6.0 Hz, 2H), 1.79 (s, 3H), 
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1.76 (s, 3H); 13C NMR (75 MHz, CDCl3): δ 188.5, 165.4, 140.0, 135.7, 135.3, 133.1, 132.2, 130.3, 

129.2, 118.0, 62.3, 25.8, 18.1; HRMS (APCI-TOF) (m/z): (M+H)+ calcd for C15H16O3Br: 

323.0277, found: 323.0280. 

5.4.2.7. (E)-3-Methylbut-2-en-1-yl 4-(4-Iodophenyl)-4-oxobut-2-enoate (54) 

 The general method above was followed using the acid 34 (500 mg, 1.61 mmol) with 

Cs2CO3 (1.05 g, 3.22 mmol), KI (274 mg, 1.96 mmol), and prenyl bromide (191 µL, 1.61 mmol) 

and the mixture was stirred for 2 h at rt. After flash column chromatography (silica gel, 10% EtOAc 

in hexane) this yielded the ester as a light yellowish colored solid 55 (471 mg, 79%); mp: 61-63 

°C; 1H NMR (300 MHz, CDCl3): δ 7.89 (d, J = 9.0 Hz, 2H), 7.84 (d, J = 15.0 Hz, 1H), 7.70 (d, J 

= 9.0 Hz, 2H), 6.90 (d, J = 18.0 Hz, 1H), 5.42 (t, J = 6.0 Hz, 1H), 4.75 (d, J = 6.0 Hz, 2H), 1.80 

(s, 3H), 1.76 (s, 3H); 13C NMR (75 MHz, CDCl3): δ 188.8, 165.4, 140.0, 138.2, 135.9, 135.7, 

133.1, 130.2, 130.1, 118.0, 102.1, 62.3, 25.8, 18.1; HRMS (APCI-TOF) (m/z): (M+H)+ calcd for 

C15H16O3I: 371.0139, found: 371.0141. 

5.4.2.8. (E)-Ethyl 4-(4-methoxyphenyl)-4-oxobut-2-enoate (48) 

 The general method above was followed using the acid 31 (400 mg, 1.941 mmol) with 

ethyl iodide (200 µL, 2.33 mmol), Cs2CO3 (1.26 g, 3.88 mmol) and this was stirred for 2 h at rt. 

After flash column chromatography (silica gel, 10% EtOAc in hexane) this yielded the ethyl ester 

48 as a greenish yellow colored solid (409 mg, 90%). mp: 41-44 °C; 1H NMR (300 MHz, CDCl3) 

δ 8.72 (d, J = 8.9 Hz, 2H), 8.63 (d, J = 15.5 Hz, 1H), 7.69 (d, J = 8.9 Hz, 2H), 7.58 (d, J = 15.5 

Hz, 1H), 5.01 (q, J = 7.1 Hz, 2H), 4.61 (s, 3H), 2.06 (t, J = 7.1 Hz, 3H); 13C NMR (75 MHz, 

CDCl3) δ 188.4, 166.4, 164.9, 137.2, 132.5, 132.0, 130.4, 114.8, 61.9, 56.3, 14.9; HRMS (ESI-

TOF) (m/z): [M+Na]+ calcd for C13H14O4Na: 257.0790, found: 257.0794. 
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5.4.2.9. (E)-Ethyl 4-(4-chlorophenyl)-4-oxobut-2-enoate (49) 

 The general method above was followed using the acid 32 (500 mg, 3.37 mmol) with 

Cs2CO3 (1.54 g, 6.74 mmol), iodoethane (210, 3.71 mmol) in DMF (3 mL) and the mixture was 

stirred for 2h at rt. After flash column chromatography (silica gel, 10% EtOAc in hexane) this 

yielded the ethyl ester 49 as a greenish yellow colored oil (660 mg, 82%). 1H NMR (500 MHz, 

CDCl3) 1.38 (t, J = 7.5 Hz, 3H), 4.34 (q, J = 7.5 Hz, 2H), 6.92 (d, J = 15.5 Hz, 1H), 7.52 (d, J = 

8.4 Hz, 2H), 7.89 (d, J = 15.4 Hz,1H), 7.98 (d, J = 8.4 Hz, 2H);  13C NMR (125 MHz, CDCl3) δ 

188.3, 165.4, 140.5, 135.8, 135.0, 133.1, 130.3, 129.3, 129.3, 61.5, 14.2; HRMS (ESI-TOF) 

(M+H)+ calcd for C12H12O3Cl: 239.0470, found: 239.0445. 

5.4.2.10. (E)-Ethyl 4-(4-bromophenyl)-4-oxobut-2-enoate (50) 

 The general method above was followed using the acid 33 (500 mg, 1.96 mmol) with 

Cs2CO3 (1.28 g, 3.92 mmol), iodoethane (173.2 µL, 2.16 mmol) in DMF (3 mL) and this was 

stirred for 2h at rt. After flash column chromatography (silica gel, 10% EtOAc in hexane) this 

yielded the ethyl ester 50 as a light yellowish colored solid (472 mg, 85%). mp 64-65 oC; 1H NMR 

(500 MHz, CDCl3) δ 1.38 (t, J = 7.2 Hz, 3H), 4.38 (q, J = 7.1 Hz, 2H), 6.92 (d, J = 15.5 Hz, 1H), 

7.69 (d, J = 8.5 Hz, 2H), 7.88 (d, J = 15.5 Hz, 1H), 7.90 (d, J = 8.5 Hz, 2H); 13C NMR (125 MHz, 

CDCl3) δ 188.5, 165.4, 135.8, 135.4, 133.1, 132.3, 130.3, 129.3, 61.5, 14.2; HRMS (ESI-TOF) 

(m/z): (M+H)+ calcd for C12H12O3Br: 282.9964, found: 283.0001. 

5.4.2.11. (E)-Ethyl 4-(4-iodophenyl)-4-oxobut-2-enoate (51) 

 The general method above was followed using the acid 34 (500 mg, 1.65 mmol) with 

Cs2CO3 (1.07 g, 3.3 mmol), iodoethane (146 µL, 1.81 mmol) in DMF (3 mL) and this mixture was 

stirred for 2h at rt. After flash column chromatography (silica gel, 10% EtOAc in hexane) this 

yielded the ethyl ester 51 as a light yellowish colored solid (463 mg, 85%). m.p. 52-54 oC; 1H 
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NMR (300 MHz, CDCl3) δ 1.37 (t, J = 7.12 Hz, 3H), 4.32 (q, J = 7.10 Hz, 2H), 6.91 (d, J = 15.52 

Hz, 1H), 7.72 (d, J = 8.25 Hz, 2H), 7.93-7.82 (m, 3H); 13C NMR (75 MHz, CDCl3) δ 188.8, 165.4, 

138.2, 135.9, 135.7, 133.1, 130.1, 102.1, 61.5, 14.2. HRMS (ESI-TOF) (m/z): (M+H)+ calcd for 

C12H12O3I: 330.9826, found: 330.9809. 

5.4.3. General procedure for the acid catalyzed esterification of aroylacrylic acid; synthesis 

of aroylacrylic esters 43-45. Representative procedure for the synthesis of isopropyl (E)-4-

(4-(tert-butyl)phenyl)-4-oxobut-2-enoate (43) 

 To a stirred solution of the acid 16 (500 mg, 2.152 mmol) in anhydrous toluene (5 mL) was 

added isopropyl alcohol (823.4 µL, 10.76 mmol), conc. H2SO4 (65 µL, 30 µL/mmol), MgSO4 (647 

mg, 5.38 mmol) at rt under a positive pressure of argon. The reaction mixture, which resulted, was 

then stirred for 18 h at rt. The reaction mixture was filtered and the residue was washed with 

toluene (until no more product could be obtained; ~ 5 mL; TLC, silica gel). The combined toluene 

layer was brought to neutral pH [pH paper] with aq sat NaHCO3 solution. The solution was 

subsequently washed with water (30 mL), brine (30 mL), dried (Na2SO4), and concentrated under 

vacuum to yield the crude ester 43. This material was further purified by flash column 

chromatography (silica gel, 10% EtOAc in hexane) to yield the ester 43 as a light yellow colored 

oil (472 mg, 80%). 1H NMR (300 MHz, CDCl3) δ 7.94 (d, J = 8.5 Hz, 2H), 7.88 (d, J = 15.6 Hz, 

1H), 7.52 (d, J = 8.5 Hz, 2H), 6.85 (d, J = 15.6 Hz, 1H), 5.28 – 4.93 (m, 1H), 1.35 (s, 9H), 1.32 (d, 

J = 6.3 Hz, 6H); 13C NMR (75 MHz, CDCl3) δ 189.2, 165.2, 157.8, 136.4, 134.1, 132.8, 128.9, 

125.9, 68.9, 35.3, 31.1, 21.8; HRMS (ESI-TOF) (m/z): [M+Na]+ calcd for C17H22O3Na: 297.1467, 

found: 297.1461. 

5.4.3.1. Tert-Butyl (E)-4-(4-(tert-butyl)phenyl)-4-oxobut-2-enoate (44) 

 The general method above was followed using the acid 16 (100 mg, 0.430 mmol) with tert-

butanol (200 µL, 2.15 mmol), conc. H2SO4 (13 µL), MgSO4 (130 mg, 1.1 mmol) and the mixture 
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was stirred for 18 h at rt. After flash column chromatography (silica gel, 10% EtOAc in hexane) 

this yielded the t-butyl ester 44 as a greenish yellow colored solid (93 mg, 75%). mp: 59-62 °C; 

1H NMR (300 MHz, CDCl3) δ 7.94 (d, J = 8.3 Hz, 2H), 7.82 (d, J = 15.6 Hz, 1H), 7.52 (d, J = 8.3 

Hz, 2H), 6.80 (d, J = 15.6 Hz, 1H), 1.54 (s, 9H), 1.35 (s, 9H); 13C NMR (75 MHz, CDCl3) δ 189.4, 

164.9, 157.7, 135.8, 134.2, 128.9, 125.8, 81.8, 35.2, 31.1, 28.0; HRMS (ESI-TOF) (m/z): [M+Na]+ 

calcd for C18H24O3Na: 311.1623, found: 311.1617. 

5.4.3.2. 2,2,2-Trifluoroethyl (E)-4-(4-(tert-butyl)phenyl)-4-oxobut-2-enoate (45) 

 The general method above was followed in the absence of the solvent toluene using the 

acid 16 (100 mg, 0.430 mmol) with 2,2,2-trifluoroethanol (excess), conc. H2SO4 (13 µL), MgSO4 

(130 mg, 1.1 mmol) and the mixture was stirred for 18 h at 60 °C. After flash column 

chromatography (silica gel, 10% EtOAc in hexane) this yielded the ester 45 as an off-white solid 

(105 mg, 78%). mp: 52-56 °C; 1H NMR (300 MHz, CDCl3) δ 8.03 (d, J = 15.6 Hz, 1H), 7.97 (d, 

J = 8.4 Hz, 2H), 7.56 (d, J = 8.4 Hz, 2H), 6.95 (d, J = 15.6 Hz, 1H), 4.65 (q, J = 8.3 Hz, 2H), 1.38 

(s, 9H); 13C NMR (75 MHz, CDCl3) δ 188.4, 164.0, 158.2, 138.7, 133.8, 129.7, 128.9, 125.9, 122.7 

(q, 1JC-F = 277.5 Hz), 60.9 (q, 2JC-F = 37.5 Hz), 35.3, 31.0; HRMS (ESI-TOF) (m/z): [M+H]+ calcd 

for C16H18F3O3: 315.1208, found: 315.1202. 

5.4.4. General procedure for the synthesis of ethyl esters 56 and 57. Representative procedure 

for the synthesis of ethyl (E)-4-((4-(tert-butyl)phenyl)amino)-4-oxobut-2-enoate (56) 

 To a stirred solution of ethyl (E)-4-chloro-4-oxobut-2-enoate 55 (2.18 g, 13.4 mmol) in 

anhydrous THF (20 mL) was added 4-(tert-butyl)aniline (2 g, 13.4 mmol) slowly dropwise at rt. 

The formation of a solid was observed and then DIPEA (2.1 g, 16.08 mmol) was added slowly 

dropwise at rt which gave a clear solution. The reaction mixture, which resulted, was then stirred 

for 30 min at rt. The reaction progress was monitored by TLC (silica gel, 25% EtOAc in hexane).  
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After the disappearance of starting materials, the reaction mixture was quenched with water (10 

mL) and extracted with ethyl acetate (3 × 50 mL). The combined organic layer was washed with 

brine (50 mL), dried (Na2SO4), and concentrated under vacuum to yield the crude ester 56. This 

material was further purified by flash column chromatography (silica gel, 10% EtOAc in hexane) 

and this yielded the ester 56 as a white solid (3.17 g, 86%). mp: 97-100 °C; 1H NMR (500 MHz, 

CDCl3) δ 8.39 (s, 1H), 7.57 (d, J = 8.4 Hz, 1H), 7.37 (d, J = 8.4 Hz, 1H), 7.23 (d, J = 15.3 Hz, 1H), 

6.99 (d, J = 15.3 Hz, 1H), 4.30 (q, J = 7.1 Hz, 2H), 1.40 – 1.29 (m, 12H); 13C NMR (125 MHz, 

CDCl3) δ 166.0, 161.7, 148.1, 137.3, 134.9, 130.9, 125.9, 120.0, 61.5, 34.5, 31.3, 14.2; HRMS 

(ESI-TOF) (m/z): [M-H]- calcd for C16H20NO3: 274.1448, found: 274.1440. 

5.4.4.1. 4-(tert-Butyl)phenyl ethyl fumarate (57) 

 The general method above was followed using ethyl (E)-4-chloro-4-oxobut-2-enoate 55 

(0.4 g, 2.66 mmol) with 4-(tert-butyl)phenol (0.38 g, 2.66 mmol), DIPEA (0.41 g, 3.2 mmol) and 

the mixture was stirred for 30 min at rt. After flash column chromatography (silica gel, 10% EtOAc 

in hexane) this process yielded the ester 57 as a white solid (639 mg, 87%). mp: 41-44 °C; 1H 

NMR (300 MHz, DMSO-d6) δ 7.46 (d, J = 8.7 Hz, 2H), 7.14 (d, J = 8.7 Hz, 2H), 6.96 (s, 2H), 4.25 

(q, J = 7.1 Hz, 2H), 1.37 – 1.22 (m, 12H); 13C NMR (75 MHz, CDCl3) δ 164.8, 163.6, 149.1, 

147.9, 135.2, 132.9, 126.4, 120.6, 61.5, 34.5, 31.4, 14.1; HRMS (ESI-TOF) (m/z): [M+H]+ calcd 

for C16H21O4: 277.1440, found: 277.1449. 

5.4.5. Ethyl (E)-4-(4-(tert-butyl)phenyl)-4-hydroxybut-2-enoate (58) 

 To a stirred solution containing ethyl (E)-4-(4-(tert-butyl)phenyl)-4-oxobut-2-enoate 13 

(100 mg, 0.384 mmol) in anhydrous methanol (3 mL) at -10 °C, KBH4 (20.7 mg, 0.384 mmol) 

was added and the mixture was stirred for 1 h. The reaction progress was monitored by TLC (silica 

gel, 25% EtOAc in hexane).  After the disappearance of starting material, the reaction mixture was 
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quenched with a sat aq NH4Cl solution (5 mL) and extracted with ethyl acetate (3 × 10 mL). The 

combined organic layer was washed with brine (50 mL), dried (Na2SO4), and concentrated under 

vacuum to yield the crude ester 58. This material was further purified by flash column 

chromatography (silica gel, 20% EtOAc in hexane) to yield the ester 58 as a light yellow colored 

oil (89 mg, 88%). 1H NMR (300 MHz, CDCl3) δ 7.42 (d, J = 8.2 Hz, 2H), 7.31 (d, J = 8.2 Hz, 2H), 

7.08 (dd, J = 15.6, 4.8 Hz, 1H), 6.18 (d, J = 15.6 Hz, 1H), 5.36 (s, 1H), 4.21 (q, J = 7.1 Hz, 2H), 

2.21 (s, 1H), 1.37 – 1.22 (m, 12H); 13C NMR (75 MHz, CDCl3) δ 166.5, 151.5, 148.6, 137.9, 126.4, 

125.8, 120.1, 73.4, 60.5, 34.5, 31.3, 14.2; HRMS (EI) (m/z): [M]+ calcd for C16H22O3: 262.1569, 

found: 262.1543. 

5.4.6. Ethyl (E)-4-oxo-4-(4-(prop-2-yn-1-yloxy)phenyl)but-2-enoate (59) 

 The phenol 41 (1 g, 4.541mmol) was dissolved in anhydrous DMF (7 mL) and Cs2CO3 

(2.22 g, 6.811 mmol) was added at rt under a positive pressure of argon. The reaction mixture 

which resulted turned to a orange red color and was then stirred for 30 min after which the 

propargyl bromide (410.2 µL, 5.45 mmol) was added dropwise with a syringe and the mixture then 

stirred for 1 h. The reaction mixture was quenched with water (10 mL) and extracted with ethyl 

acetate (3 × 40 mL). The combined organic layer was washed with brine (3 × 100 mL), dried 

(Na2SO4), and concentrated under vacuum to yield the crude ethyl ester 59. This material was 

further purified by flash column chromatography (silica gel, 20% EtOAc in hexane) to furnish the 

ester 59 as an off-white solid (1 g, 86%). mp: 73-76 °C; 1H NMR (300 MHz, CDCl3) δ 8.03 (d, J 

= 8.8 Hz, 2H), 7.92 (d, J = 15.5 Hz, 1H), 7.08 (d, J = 8.8 Hz, 2H), 6.88 (d, J = 15.5 Hz, 1H), 4.79 

(d, J = 2.3 Hz, 2H), 4.31 (q, J = 7.1 Hz, 2H), 2.59 (t, J = 2.3 Hz, 1H), 1.36 (t, J = 7.1 Hz, 3H); 13C 

NMR (75 MHz, CDCl3) δ 187.7, 165.7, 161.9, 136.4, 132.0, 131.2, 130.4, 114.9, 77.5, 76.4, 61.3, 

55.9, 14.2; HRMS (ESI-TOF) (m/z): [M+Na]+ calcd for C15H14O4Na: 281.0790, found: 281.0788. 
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5.4.7. Ethyl (E)-4-oxo-4-(4-(trifluoromethyl)phenyl)but-2-enoate (60) 

 To a solution of 1-(4-(trifluoromethyl)phenyl)ethenone (2 g, 10.62 mmol) in a  mixture of 

AcOH (10 mL) and HCl (2 mL) was added glyoxylic acid monohydrate (978 mg, 10.62 mmol). 

The reaction mixture, which resulted, was heated to reflux for 18 h. The reaction progress was 

monitored by TLC (silica gel, 5% MeOH in CH2Cl2).  After disappearance of the starting material, 

the solvents were removed in vacuo and the acid was dried (benzene employed as the azeoptropic 

distillation solvent). The crude acid (2.1 g, 81%) was used directly in the next step. The general 

method for synthesis of ethyl ester 13 was followed using the above acid (620 mg, 2.5 mmol) with 

ethyl iodide (240 µL, 3 mmol), Cs2CO3 (1.63 g, 5 mmol) and this mixture was stirred for 2 h at rt. 

After flash column chromatography (silica gel, 10% EtOAc in hexane) this yielded the ester 60 as 

a light yellow solid (626 mg, 92%). mp: 67-70 °C; 1H NMR (300 MHz, CDCl3) δ 8.10 (d, J = 6.0 

Hz, 2H), 7.88 (d, J = 15.0 Hz, 1H), 7.78 (d, J = 6.0 Hz, 2H), 6.92 (d, J = 15.0 Hz, 1H), 4.32 (q, J 

= 9.0 Hz, 2H), 1.36 (t, J = 6.0 Hz, 3H); 13C NMR (75 MHz, CDCl3) δ 188.7, 165.2, 139.3, 135.5, 

134.9 (q, 2JC-F = 33 Hz), 133.7, 129.1, 125.9 (q, 3JC-F = 3.7 Hz), 123.4 (q, 1JC-F = 271.5 Hz), 61.6, 

14.1; HRMS (ESI-TOF) (m/z): [M-H]- calcd for C13H10F3O3: 271.0587, found: 271.0601. 

5.4.8. (E)-10-Hydroxydecyl 4-(4-(tert-butyl)phenyl)-4-oxobut-2-enoate (61) 

 The Cs2CO3 (1.75 g, 5.38 mmol) was added to a stirred solution of the acid 16 (500 mg, 

2.15 mmol) in anhydrous DMF (8 mL) after which 10-bromo-1-decanol (766 mg, 3.23 mmol) was 

added slowly with a syringe under a positive pressure of argon. The reaction mixture, which 

resulted, was then stirred for 1 h (a longer reaction time was found to be detrimental to the yield). 

After completion of the reaction, as indicated by TLC (silica gel, 30% EtOAc in hexane), the 

reaction mixture was diluted with EtOAc (60 mL) and poured into water. The organic layer was 

separated and washed with water (50 mL), brine (3 x 50 mL), and dried (Na2SO4). The solvent 
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was removed under reduced pressure to give a light yellow colored oil. Flash column 

chromatography with 30% EtOAc in hexane on silica gel furnished the alcohol 61 as a light yellow 

colored oil (770 mg, 92%). 1H NMR (500 MHz, CDCl3) δ 7.97 (d, J = 8.37 Hz, 2H), 7.94 (d, J = 

15.6 Hz, 1H), 7.55 (d, J = 8.3 Hz, 2H), 6.91 (d, J = 15.5 Hz, 1H), 4.28-4.24 (m, 2H), 3.68-3.64 (m, 

2H), 1.76-1.69 (m, 2H), 1.62-1.55 (m, 2H), 1.44-1.31 (m, 21H); 13C NMR (125 MHz, CDCl3): 

189.1, 165.8, 157.9, 136.6, 134.1, 132.3, 128.9, 125.9, 65.5, 63.1, 35.3, 32.8, 31.1, 29.5, 29.4, 29.4, 

29.2, 28.5, 25.9, 25.7; HRMS (ESI-TOF) (m/z): [M+H]+ calcd for C24H37O4:  389.2686, found: 

389.2696. 

5.4.9. (E)-10-((Diethoxyphosphoryl)oxy)decyl 4-(4-(tert-butyl)phenyl)-4-oxobut-2-enoate 

(62) 

 To a stirred solution of the alcohol 61 (50 mg, 0.13 mmol) and Et3N (89.7 μL, 0.64 mmol) 

in dry CH2Cl2 (3 mL), diethyl chlorophosphate (37.1 μL, 0.26 mmol) was added at rt. The reaction 

mixture, which resulted, was then stirred overnight. After completion of the reaction, as indicated 

by TLC (silica gel, 50% EtOAc in hexane) and LR-MS, the reaction mixture was diluted with 

CH2Cl2 and water. The organic layer was separated and the aq layer was extracted with CH2Cl2 (2 

x 10 mL). The combined organic layer was washed with brine (3 x 20 mL) and dried  (Na2SO4) to 

provide a light brown oil which upon purification on silica gel (flash chromatography) with 50% 

EtOAc in hexane provided the pure alkyl diethyl phosphate ester 62 as a colorless oil (64 mg, 

95%). 1H NMR (500 MHz, CDCl3) δ 7.97 (d, J = 8.5 Hz, 2H), 7.93 (d, J = 15.6 Hz, 1H), 7.54 (d, 

J = 8.4 Hz, 2H), 6.90 (d, J = 15.7 Hz, 1H), 4.25 (t, J = 6.7 Hz, 2H), 4.16-4.09 (m, 4H), 4.05 (q, J 

= 6.8 Hz, 2H), 1.75-1.66 (m, 4H), 1.42-1.30 (m, 27H); 13C NMR (125 MHz, CDCl3): 189.1, 165.8, 

157.8, 136.6, 134.1, 132.2, 128.9, 125.9, 67.7, 67.6, 65.5, 63.6, 63.6, 35.3, 31.0, 30.3, 30.3, 29.4, 
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29.2, 29.1, 28.5, 25.9, 25.4, 16.2, 16.1; HRMS (ESI-TOF) (m/z): [M+H]+ calcd for C28H46O7P: 

525.2976, found: 525.2985. 

5.4.10. Ethyl (E)-4-(benzo[b]thiophen-2-yl)-4-oxobut-2-enoate (63) 

 The general method for compound 20 was followed using with 4-benzo[b]thiophen-2-yl-

4-hydroxy-but-2-ynoic acid ethyl ester 27 (157 mg, 0.6031 mmol), a 0.01 M solution of 

hydroquinone in DMSO (0.6 mL, 0.0060 mmol) and NaHCO3 (10 mg, 0.1206 mmol) in 

DMSO:H2O (8:1, 2 mL) and this mixture was allowed to stirr for 18 h. After flash column 

chromatography on silica gel (2% EtOAc in hexane) this provided enoate 63 as a light pale 

yellowish colored solid (64 mg, 68%). mp: 71–75 °C; 1H NMR (300 MHz, CDCl3) δ 8.11 (s, 1H), 

7.95-7.87 (m, 3H), 7.53 – 7.41 (m, 2H), 6.98 (d, J = 15.4 Hz, 1H), 4.33 (q, J = 7.1 Hz, 2H), 1.38 

(t, J = 7.1 Hz, 3H); 13C NMR (125 MHz, CDCl3) δ 182.7, 165.5, 143.9, 143.2, 139.1, 135.3, 132.3, 

130.9, 128.2 126.4, 125.3, 123.1, 61.5, 14.2; HRMS (ESI-TOF) (m/z): [M+Na]+ calcd for 

C14H12O3SNa: 283.0405, found: 283.0413. 

5.4.11. (2S,3R)-Ethyl 4-(benzo[b]thiophen-2-yl)-2,3-dihydroxy-4-oxobutanoate (64) 

 To a solution of ester 63 (37 mg, 0.142 mmol) in acetone (4.5 mL) and H2O (0.5 mL) at rt, 

was added NMO (25 mg, 0.213 mmol), and OsO4 (0.72 mg, 0.0028 mmol). The reaction mixture, 

which resulted, was stirred for 1 h. The reaction mixture was then quenched with a sat aq solution 

of Na2S2O4 (5 mL), and stirred for 30 min. The aq layer was extracted with EtOAc (2 x 10 mL) 

and the combined organic layer was washed with brine (20 mL), dried (Na2SO4), and concentrated 

under vacuum to yield the crude ester 64. This material was further purified by flash column 

chromatography (silica gel, 30% EtOAc in hexane) to yield the ester 64 as an off-white solid (33.4 

mg, 80%). mp: 108-112 °C; 1H NMR (300 MHz, CDCl3) δ 8.14 (s, 1H), 7.95 (dd, J = 12.9, 8.0 

Hz, 2H), 7.51 (dt, J = 14.8, 7.1 Hz, 2H), 5.38 (d, J = 1.4 Hz, 1H), 4.76 (d, J = 1.4 Hz, 1H), 4.42 



www.manaraa.com

  

237 

 

(q, J = 7.1 Hz, 2H), 1.43 (t, J = 7.1 Hz, 3H); 13C NMR (75 MHz, CDCl3) δ 191.3, 171.4, 142.7, 

138.8, 138.6, 130.5, 128.2, 126.3, 125.4, 123.0, 75.4, 73.1, 62.8, 14.3. HRMS (ESI-TOF) (m/z): 

[M+H]+ calcd for C14H15O5S: 295.0635, found: 295.0662. 

5.4.12. (E)-3-(Benzo[b]thiophen-2-yl)-2-cyanoacrylamide (65) 

 To a stirred solution of benzo[b]thiophene-2-carboxaldehyde (500 mg, 3.08 mmol) in 

EtOH (12 mL) was added 2-cyanoacetamide (259.1 mg, 3.08 mmol), and piperidine (304.2 µL, 

3.08 mmol). The reaction mixture which resulted was then stirred for 18 h and then the EtOH was 

removed in vacuo. The crude residue was subjected to flash column chromatography on silica gel 

(40% EtOAc in hexane) to yield the amide 65 as a yellow colored solid (492 mg, 70%): mp: 181-

184 °C; 1H NMR (300 MHz, DMSO-d6) δ 8.51 (s, 1H), 8.19 (s, 1H), 8.13 (d, J = 7.9 Hz, 1H), 8.03 

(d, J = 7.7 Hz, 1H), 7.87 (d, J = 34.7 Hz, 2H), 7.52 (dt, J = 14.4, 6.9 Hz, 2H); 13C NMR (75 MHz, 

DMSO) δ 162.8, 144.6, 141.9, 138.3, 136.1, 136.0, 128.3, 126.0, 123.5, 116.8, 105.2; HRMS (ESI-

TOF) (m/z): [M+H+CH3CN]+ calcd for C14H12N3OS: 270.0696, found: 270.0678. 

5.4.13. (E)-1,6-Bis(benzo[b]thiophen-2-yl)hex-3-ene-1,6-dione (66) 

 A heavy-wall pressure tube was equipped with a magnetic stir bar and fitted with a rubber 

septum. It was then charged with 1-(benzo[b]thiophen-2-yl)prop-2-en-1-one (115.4 mg, 0.61 

mmol), 2-bromo-5-methyl-1,3,4-oxadiazole (100 mg, 0.61 mmol), Pd(OAc)2 (2.7 mg, 0.012 

mmol), PPh3 (8 mg, 0.0305 mmol), triethyl amine (40 µL, 0.305 mmol), and freeze-thawed 

anhydrous MeCN (5 mL) was injected into the tube with a degassed syringe under a positive 

pressure of argon. The vessel was evacuated and backfilled with argon (this process was repeated 

a total of three times). The rubber septum was replaced with a screw cap by quickly removing the 

rubber septum under a flow of argon and the sealed tube was introduced into a pre-heated oil bath 

at 85 °C. The reaction mixture was maintained at this temperature for 3-4 h. At the end of this time 
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period, the pressure tube was allowed to cool to rt. The reaction mixture was filtered through a 

short pad of celite, and the pad was washed with ethyl acetate (until no more product could be 

obtained; 30 mL; TLC, silica gel). The combined organic fractions were washed with water (50 

mL), brine (50 mL), dried (Na2SO4), and concentrated under reduced pressure. The crude product 

was purified by flash column chromatography (silica gel, 25% EtOAc in hexane) to afford 66 as 

an off-white solid (165 mg, 72%). mp: 126-130 °C; 1H NMR (300 MHz, CDCl3) δ 7.98 (s, 1H), 

7.92 – 7.79 (m, 5H), 7.53 – 7.31 (m, 4H), 5.98 (s, 2H), 3.31 (t, J = 7.3 Hz, 2H), 3.01 (t, J = 7.2 Hz, 

2H). 13C NMR (75 MHz, CDCl3) δ 193.7, 190.8, 146.3, 143.4, 142.8, 142.7, 142.5, 139.1, 138.9, 

131.5, 129.5, 127.5, 127.4, 126.1, 125.9, 125.5, 124.9, 124.9, 122.9, 122.8, 37.6, 28.3. HRMS 

(ESI-TOF) (m/z): [M+Na]+ calcd for C22H16O2S2Na: 399.0484, found: 399.0469. 

5.4.14. Ethyl (E)-3-((4-(tert-butyl)phenyl)sulfinyl)acrylate (68) 

 To a stirred solution of sulfide 67 (100 mg, 0.38 mmol) in glacial acetic acid (1 mL) was 

added 30% H2O2 (173 µL, 1.52 mmol) at rt and the reaction mixture which resulted was stirred for 

4 h at the same temperature. The reaction progress was monitored by TLC (silica gel, 10% EtOAc 

in hexane).  After the disappearance of the starting material, the solution which resulted was 

neutralized with aq NaOH (4 M) and the sulfoxide, which formed, was extracted with CH2Cl2 (2 

x 10 mL). The combined organic layer was washed with water (30 mL), brine (30 mL), dried 

(Na2SO4) and concentrated under reduced pressure. The crude product was purified by flash 

column chromatography (silica gel, 10% EtOAc in hexane) to yield sulfoxide 68 as an off-white 

solid (77 mg, 72%). mp: 60-64 °C; 1H NMR (500 MHz, CDCl3) δ 7.62 – 7.55 (m, 4H), 7.51 (d, J 

= 14.9 Hz, 1H), 6.76 (d, J = 14.9 Hz, 1H), 4.26 (q, J = 6.7 Hz, 2H), 1.36 (s, 9H), 1.33 (t, J = 7.1 

Hz, 3H); 13C NMR (125 MHz, CDCl3) δ 164.1, 155.7, 151.2, 138.2, 126.9, 124.9, 124.1, 61.4,35.1, 

31.2, 14.2; HRMS (ESI-TOF) (m/z): [M+H]+ calcd for C15H21O3S: 281.1206, found: 281.1235. 
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5.4.15. Ethyl (E)-3-((4-(tert-butyl)phenyl)sulfonyl)acrylate (69) 

 To a stirred solution of sulfide 67 (100 mg, 0.38 mmol) in CH2Cl2 (3 mL), MCPBA (213 

mg, 0.95 mmol) was added at rt. The reaction mixture which resulted was stirred for 30 min at the 

same temperature, and the formation of a white slurry was observed. The reaction progress was 

monitored by TLC (silica gel, 5% EtOAc in hexane).  After the disappearance of the starting 

material, the reaction mixture was diluted with CH2Cl2 (15 mL) and then a sat aq solution of 

NaHCO3 (10 mL) was added dropwise. The reaction mixture which resulted was stirred for 10 min 

and then the organic layer was separated and washed with water (30 mL), brine (30 mL), dried 

(Na2SO4) and concentrated under reduced pressure. The crude product was purified by flash 

column chromatography (silica gel, 5% EtOAc in hexane) to yield sulfone 69 as an off-white solid 

(98 mg, 87%). mp: 90-92 °C; 1H NMR (500 MHz, CDCl3) δ 7.86 (d, J = 8.5 Hz, 2H), 7.62 (d, J = 

8.4 Hz, 2H), 7.35 (d, J = 15.2 Hz, 1H), 6.84 (d, J = 15.2 Hz, 1H), 4.27 (q, J = 7.1 Hz, 2H), 1.38 (s, 

9H), 1.33 (t, J = 7.1 Hz, 3H); 13C NMR (125 MHz, CDCl3) δ 163.6, 158.6, 143.5, 135.4, 130.6, 

128.3, 126.7, 62.0, 35.4, 31.1, 14.1; HRMS (ESI-TOF) (m/z): [M+H+CH3CN]+ calcd for 

C17H24NO4S: 338.1420, found: 338.1428. 

5.4.16. MIC vs. replicating M. tuberculosis H37Rv (MABA Assay) 

 All compounds were evaluated for MIC vs. M. tuberculosis H37Rv (ATCC 27294) using 

the microplate Alamar Blue assay (MABA) as previously described19  except that one now uses 

7H12 media 21 (instead of 7H9 + glycerol + casitone + OADC). In the case of compounds which 

exhibit significant background fluorescence, one also utilizes luciferase reporter strains of M. 

tuberculosis H37Rv, as well as measurement of intracellular adenosine triphosphate. The cultures 

were incubated in 200 µL medium in 96-well plates for 7 days at 37 °C. Alamar Blue and Tween 

80 were added and the incubation continued for 24 hours at 37 °C. Fluorescence was determined 
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at excitation/emission wavelengths of 530/590 nm, respectively. The MIC was defined as the 

lowest concentration effecting a reduction in fluorescence (or luminescence) of 90% relative to 

controls. Six control compounds were run in each experiment including isoniazid, rifampin, 

moxifloxacin, streptomycin, PA-824 and metronidazole.  

5.4.17. Activity against non-replicating persistant (NRP) M. tuberculosis (LORA Assay) 

 This Low Oxygen Recovery Assay (LORA) 20 was designed to detect compounds which 

may have the potential for shortening the duration of therapy through (more) efficient killing of 

the non-replicating persistor (NRP) populations. The assay involves 1) adaptation of M. 

tuberculosis to low oxygen through gradual, monitored, self-depletion of oxygen during culture in 

a sealed flask with slow stirring, 2) exposure for 10 days of the low-oxygen adapted culture to test 

compounds in microplates that are maintained under an anaerobic environment using an Anoxomat 

system, thus precluding growth and 3) subsequent evaluation of M. tuberculosis viability as 

determined by the ability to recover. Recovery/viability is determined by the extent to which a 

luciferase-expressing strain can recover the ability to produce luminescence. This assay is HTS-

compatible. Compounds such as isoniazid and ethambutol which are considered to be devoid of 

“sterilizing activity”, are inactive in this assay. Confirmation of new classes with activity is made 

by immediate subculture (without recovery phase) onto solid, drug-free media and determination 

of colony forming units. The rifamycins and the more potent fluoroquinolones, which do appear 

to eliminate some proportion of the persistor population and thus can affect treatment duration, are 

active, albeit at concentrations higher than the MICs for replicating cultures. The correlation 

between the cfu and luminescence readout has been good with the exception of the fluoroquinolone 

class for which luminescence underestimated absolute activity but not relative activity.  
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5.4.18. Cytotoxicity  

 Compounds were routinely tested for cytotoxicity using VERO cells.21 After 72 hours 

exposure, viability was assessed on the basis of cellular conversion of MTS into a soluble formazan 

product using the Promega CellTiter 96 Aqueous Non-Radioactive Cell Proliferation Assay.  

Rifampin is included as a control. For compounds with IC50:MIC >10, cytotoxicity will be 

repeated, this time using the J774.1 macrophage cell line since these are used in the macrophage 

assay and are usually somewhat more sensitive than VERO cells. This is important for interpreting 

data from the macrophage assay. Since much more comparative data is available for VERO cells, 

we still prefer to use these for primary cytotoxicity testing. Additional cell lines include HepG2 

and the new metabolically active HepaRG which can be employed as well in the future. 
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CHAPTER 6 

IDENTIFICATION OF MOLECULAR TARGETS FOR THE ANTIMICROBIAL 

AGENT 59 (ETHYL (E)-4-OXO-4-(4-(PROP-2-YN-1-YLOXY)PHENYL)BUT-

2-ENOATE) 

6.1. INTRODUCTION 

In 1963 Rolf Huisgen introduced the concept of 1,3-dipolar cycloadditions of organic 

azides and alkynes. However, the reaction required long reaction times, high temperatures and/or 

pressures and resulted in the formation of two products, 1,4- and 1,5-regioisomers.1 The high 

potential of this transformation, especially in the case of azides and alkynes to form aromatic 

triazole cycloaddition products (ΔG° ≈ -61 Kcal mol-1), was too important to be ignored.2 Although 

many research groups employed this process, it was not before 2001 that the Meldal and Sharpless 

laboratories independently discovered a Cu (I)-catalyzed variation of the 1,3-dipolar cycloaddition 

of azides with terminal alkynes. This permited a very fast, efficient and selective formation of 1,4-

disubstituted 1,2,3-triazole regioisomers under milder reaction conditions (Scheme 6-1).3,4 The 

reaction, termed as the copper catalyzed azide-alkyne 1,3-dipolar cycloaddition (CuAAC), 

proceeded approximately seven times faster than the uncatalyzed reaction. In addition, improved 

kinetics were achieved with the use of specific ligands for copper (I), as shown in Figure 6-1.5,6 

Scheme 6-1. Comparison between the thermally-induced and Cu (I) catalyzed Huisgen cycloaddition reaction conditions 

The catchy phrase “Click Chemistry (CC)” proposed by Dr. Barry Sharpless at the 217th 

American Chemical Society Annual Meeting and his landmark review in 2001 refered to a concept 
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of the reaction that mimics nature.3 The process, as stated by Sharpless, is Mother Nature’s strategy 

for accomplishing incredible biological diversity from a very limited number of monomers (i.e. 

the formation of proteins from amino acids, DNA/RNA from nucleotides, polysaccarides from 

monosaccharides and so on). According to Sharpless, CC refers to a group of reactions that: “must 

be modular, energetically favored, wide in scope, high yielding, and irreversible. The reaction 

should be stereospecific but not necessarily enantioselective and generate by-products that can be 

removed without chromatography. The required process characteristics should include simple 

reaction conditions (ideally, the process should be insensitive to oxygen and water), readily 

available starting materials and reagents, application of water as solvent and simple product 

isolation. Ideally, products are purified by non-chromatographic methods such as crystallization 

or distillation and products must be stable under physiological conditions”.3 The process of CC 

plays a pivotal role in the quest for function and can be stated in one sentence: “all searches must 

be restricted to molecules that are easy to make”.3 

Figure 6-1. Structure of ligands for biocompatible copper-catalyzed azide-alkyne cycloaddition reactions 

The concept of CC did not take long before it was applied to many different areas of science 

such as molecular and chemical biology, materials science, macromolecular chemistry, 

bioconjugation to drug design and discovery.5,7-12 The mild reaction conditions are attractive to 
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most modern scientists especially in the field of pharmaceutical sciences for drug discovery 

processes because of the complexity involved in the earlier traditional strategies that were used to 

label biomolecules.8  

 

Scheme 6-2. Classification of Click chemistry reactions 

As stated earlier, even though meeting the benchmark of a Click reaction is not easy, a 

couple of reactions were recognized (Scheme 6-2). To the best of our knowledge Click reactions 

have been classified into four types: 1) nucleophilic ring opening reactions of aziridines, 

aziridinium ions and epoxides; 2) the formation of hydrazones, oximes, and urea, etc. for non-aldol 

carbonyl chemistry; 3) the addition reactions to carbon-carbon multiple bonds for Michael 
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processes and oxidative additions of nucleophiles. Finally, 4) cycloaddition reactions especially 

1,3-dipolar cycloaddition reactions and Diels-Alder reactions.10 

 

Scheme 6-3. The initial mononuclear mechanism of CuAAC proposed by Sharpless, Fokin, and co-workers 

 To date, the CuAAC reaction is the most applied reaction among the above processes, 

probably due to the production of stable products, the wide scope of substrates, compatibility with 

water, and minimal or no purification.3 In 2002, Sharpless, Fokin, and co-workers13 proposed the 

initial mechanism of CuAAC (Scheme 6-3). It starts with formation of copper(I) acetylide (S4A) 

followed by coordination with the azide, which results in complex (S4B). Metallacycle (S4C) is 

generated by the formation of a C-N bond (step b) and oxidation of copper from (I) to (III) in this 

step. Cuprous triazolide (S4D) is produced by ring contraction reducing copper (III) to copper (I), 

as shown in Scheme 6-3 (step c). The catalytic cycle completes with the formation of a triazole by 

protonation (S4D, step d). 
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Scheme 6-4. Up-to-date dinuclear mechanism of CuAAC, X is a bridging ligand 

 Subsequent studies on reaction kinetics suggested the presence of two copper ions that 

interact with one or two alkynes and one azide. Questions were raised about the exact mechanism 

in which this dinuclear system was involved. Initially, mechanistic studies of CuAAC focused on 

how to understand the rapid formation of the metallacycle, which resulted in the formation of the 

first C-N bond (Scheme 6-3, step b). Uusally, the formation of a six-membered from an sp-

hybridized carbon atom requires a very high activation energy.6,14 Subsequent kinetic and 

computational modeling experiments suggested the involvment of an additional copper ion for the 

metallacycle structure, which could relieve ring strain of S4C; thus lowering the activation barrier 

of the formation of the metallacycle. The extra copper ion could be introduced during the copper 

(I) acetylide step based on earlier observations of copper(I) involved in both σ and π bonding with 

C≡C bonds in structures of polymers and clusters.15,16 

 The most recent understanding of the dinuclear mechanism of CuAAC reactions, initiated 

by the formation of σ, π-di(copper) acetylide (S5A), is illustrated in Scheme 6-4. Herein the 

acetylide participates in both σ and π bonding with copper(I) which itself coordinates with the 

azide (step b) to form an azide/alkyne/copper(I) ternary complex (S5B). This leads to the fast 
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formation of metallacycle (S5C). Triazolide (S5D) is formed by the reductive ring contraction and 

deprotonation of the alkyne to complete the cycle (step a). The σ, π-di(copper) acetylide (S5A) 

and the copper(I) triazolide (S5D) structures were fully characterized by X-ray crystallography 

and verified as feasible intermediates for this reaction.17-20 The (S5B) intermediate was identified 

by ion-tagged electron spray ionization mass spectrometry.19 The dinuclear intermediate (S5C) 

exhibits less ring strain when compared to (S4C) in Scheme 6-3. In 2013, Fokin and colleagues 

clearly showed that the dicopper metallacycle (S5C) was involved in a rapid internal 

rearrangement, which scrambled the two copper centers by using a copper isotopic labeling 

experiment. To avoid ambiguity, the authors did a control experiment to eliminate the probability 

of copper scrambling at the dinuclear copper(I) acetylide step for their elaborately constructed 

catalytic cycle.18    

 In cells, enzymes employ transition metals to catalyze reactions. The well-known non-

natural metal-catalyzed reaction that took center stage in bioorthogonal chemistry in this decade 

is CuAAC because of its performance under physiological conditions. It employs low reactant 

concentrations to reduce toxicity, low background labeling at practical time scales while still 

preserving biological functions.  Currently, strain-promoted azide-alkyne Click chemistry 

reactions and tetrazine-alkene ligations play an important role for copper free in vivo labeling.5 

6.2. RESULTS AND DISCUSSION 

 Our efforts to develop new antimicrobial agents is based on a novel class of acrylic esters 

(see the previous section for details).21 To determine molecular targets of these acrylic esters, a 

novel alkyne (59) was developed bearing an alkyne as a substrate for the CuAAC reaction (Scheme 

6-5). Ligand 59 exhibited a promising MIC of 0.5 µg/mL against Staphylococcus aureus and a 

MIC of 0.25 to 0.5 µg/mL against vancomycin, methicillin, and rifampicin resistant Staphyloco-
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ccus aureus strains. This finding stimulated the search for molecular targets employing the 

CuAAC reaction using the Click-iT Plus Alexa Fluor Picolyl Azide Toolkit with fluorescently 

tagged Alexa Fluor 647 picolyl azide (AF647) in whole cell Staphylococcus aureus lysate (Scheme 

6-5). 

Scheme 6-5. CuAAC reaction between 59 and Alexa Fluor 647 picolyl azide in Staphylococcus aureus 

 Due to the electrophilic nature of 59, we expected covalent interactions with bacterial 

proteins that in turn can be detected by fluorescence after Click chemistry and separation by SDS-

PAGE (Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis). For this process, crude cell 

lysate was prepared from Staphylococcus aureus purchased from ATCC (American Type Culture 

Collection). The digestion of peptide cross-linking, found in gram-positive bacterial peptidoglycan 

cell walls, was achieved with lysostaphin. The lysate was incubated with 59 for 14 hours and 

subjected to the CuAAC reaction with fluorescent AF647 followed by separation by SDS-PAGE 

(Figure 6-2). Fluorescent labeling of proteins was only observed for 59 incubated lysate (lane 4). 

Control experiments lacking 59 or cell lysate exhibited no fluorescent bands (lane 1 or lane 2 

respectively). Direct incubation of lysostaphin and 59 produced fluorescently labeled lysostaphin 

(lane 3). 
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Figure 6-2. A) Coomassie Blue stained SDS-PAGE; Lane 1: MRSA lysate; Lane 2: lysostaphin for lysis; Lane 

3: lysostaphin incubated with 59 (14h) used for CuAAC reaction in the presence of AF647; Lane 4: MRSA 

lysate incubated with 59 (14h) used for CuAAC reaction in the presence of AF647; B) same SDS-PAGE gel 

visualized by fluorescence imaging at 635 nm. 

Further studies included the comparison of whole cell lysate, cytoplasmic, and membrane 

fractions separated from the S. aureus cells (Figure 6-3). Therefore, the incubation time was 

reduced to 4 hours. The prepared lysate, cytoplasmic, and membrane protein portions were 

subjected to the CuAAC reaction using AF647 followed by SDS-PAGE separation. A strong 

fluorescent band was observed for Michael acceptor 59 incubated membrane protein fractions 

(lane 5-7) that was also seen for the whole cell lysate (lane 4). Two lower molecular weight weak 

fluorescent bands were observed for the cytoplasmic fraction, which again were seen for the whole 

cell lysate (lane 8 and 9).       

  

Figure 6-3. A) Coomassie Blue stained SDS-PAGE; L: Ladder; Lane 1: MRSA lysate; Lane 2: MRSA 

membrane fraction; Lane 3: Cytoplasmic fraction; Lane 4: MRSA lysate incubated with 59 (14h); Lane 5-7; 

Different concentration of membrane fractions incubated with 59 used for CuAAC reaction in the presence of 

AF647; Lane 8-9; Different concentrations of cytoplasmic fractions incubated with 59 used for CuAAC in the 

presence of AF647. B) Same SDS-PAGE gel visualized by fluorescence imaging at 635 nm. 
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At this point, one focused attention on the isolation of membrane proteins that interact with 

59. Therefore, a CuAAC reaction with a biotin azide was carried out instead of AF647 to enable 

the isolation with streptavidin conjugated beads. The target protein was separated by affinity 

chromatography using a streptavidin conjugated column followed by LC-MS/MS mediated 

identification. Different fractions were collected from FPLC (fast protein liquid chromatography), 

and the purity fractions were visualized by SDS-PAGE (Figure 6-4). A pronounced band was 

observed for fraction 3-6 with a molecular weight of around 29 kDa. Gratifyingly, the labelled 

band had the same molecular weight as the one detected using a fluorescent azide (Figure 6-3).  

Some modifications was made to this protocol to overcome some shortcomings. Labelled 

membrane fractions readily undergo proteolysis during the lysate preparation. This was later 

resolved by adding a protease inhibitor. As seen in Figure 6-5A (lane 7-8), no protein bands were 

observed due to proteolysis. Furthermore, we observed that the syringe filter used for FPLC 

injections can adsorb protein. In Figure 6-5B (lane 2 and 6), the labelled protein bands were absent 

do to this unwanted interaction. Consequently, high-speed centrifugation, rather than filtration, 

was employed to prepare the samples for FPLC.          

                                 
Figure 6-4. Coomassie blue stained SDS-PAGE gel; Lane 1 and 15: Ladder; Lane 2: Pure Lysate after CuAAC 

reaction without purification; Lane 3-6, 14: Protein eluents from FPLC; Lane 7-10, 12: Washouts from FPLC 
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The labelled protein bands from the SDS-PAGE (Figure 6-4) and the purified protein 

fraction collected from affinity FPLC were subjected to in-gel22 and in-solution trypsin digestion, 

followed by desalting and LC-MS/MS analysis for protein identification. Data analysis of these 

two samples using MaxQuant 1.4.1.2 and the Uniport database for E. Coli and S. aureus identified 

three enzymes as the targets of 59: enolase (protein ID: P64079), dihydrolipoyllysine-residue 

acetyltransferase (protein ID: Q8NX76), and glyceraldehyde-3-phosphate dehydrogenase (protein 

ID: P0A037). These enzymes are known to be involved in glycolysis and act as virulence 

factors responsible for the pathogenicity of S. aureus.  

            The enolase protein was observed as one of the top hits from the mass spectral analysis of 

both in-gel and in-solution trypsin digests. Consequently, enolase from S. aureus was constructed 

in pET 15b vector and expressed in E. coli for validation. The His-tagged enolase was purified by 

FPLC using a nickel column. It is known that enolase catalyzes 2-phosphoglycerate (2-PG) to 

phosphoenolpyruvate (PEP). To investigate whether ligand 59 affected this activity, the PEP 

formation rate mediated by enolase after incubation with 59 was determined (Figure 6-6).23  

 
Figure 6-5. Coomassie Blue stained SDS-PAGE; A) L: ladder; Lane 1: unlabelled cytoplasm; Lane 2: labelled 

cytoplasm; Lane 3: unlabelled lysate; Lane 4: labelled lysate; Lane 5-6: unlabelled membrane; Lane 7-8: 

labelled membrane; B) L: ladder; Lane 1: pure membrane fraction; Lane 2, 6: Filtered membrane fraction 

after CuAAC reaction; Lane 3, 7: unfiltered membrane fraction after CuAAC reaction; Lane 5,8: centrifuged 

membrane fraction after CuAAC reaction.  

https://en.wikipedia.org/wiki/2-phosphoglycerate
https://en.wikipedia.org/wiki/Phosphoenolpyruvate
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Figure 6-6. Enolase enzymatic activity with TI-I-100 (59) and DMSO (control) 

 Surprisingly, no change in the enolase enzyme kinetics was observed. In addition, different 

crystallization methods were tried for enolase with compound 59 resulting in the formation of 

crystals after two weeks. However, these crystals did not diffract well. Currently other 

crystallization conditions are being tested. There is the possibility that 59 binds at outside the active 

site, likely on the surface of the protein and consequently inhibits the virulence of S. aureus by 

affecting the binding of the host plasminogen.24 This hypothesis was tested by incubating 59 with 

recombinantly expressed enolase for 14 hours, and this was followed by the addition of fluorescent 

tag AF647 performing the standard CuAAC reaction. The analysis of the reaction was carried out 

by SDS-PAGE gel chromatography, as shown in Figure 6-7. The Coomassie Blue stain gel showed 

a predominant band at around 50 kDa for enolase that when labeled with 59 followed by CuAAC 

with AF647 resulted in the fluorescent band with the same molecular weight.   
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Figure 6-7. Coomassie Blue stained SDS-PAGE; A) L: Ladder; Lane 1: expressed enolase; Lane 2-3: enolase 

incubated with 59 (14h); Lane 4-7: Different concentration of enolase incubated with 59 used for CuAAC 

reaction in the presence of AF647; B) Same SDS gel visualized by fluorescence imaging at 635 nm. 

To determine the enolase binding site for 59, pure enolase (E) expressed from E. coli and 

enolase incubated with a ligand 59 (EL) were subjected to in-solution trypsin digestion followed 

by LC-MS/MS analysis. The search parameters used for protein identification include trypsin 

cleavage (at lysine and arginine), fixed modifications of cysteine alkylation, differential 

modification of methionine oxidation and the 59 (addition of 258 Da) molecule adduct on cysteine 

or lysine. Data analysis was performed with MaxQuant 1.4.1.2 with the Uniprot database for E. 

coli and S. aureus. MS/MS spectra of the enolase peptide A[117-128]K without and with the 

binding of 59 are shown in Figures 6-8A and 6-8B. The peptide without a binding site had a mass 

of 1258.69 Da. In contrast, the peptide with the binding of 59 was observed at 1516.78 Da (addition 

of 258 to 1258).  The sequence of the peptide was assigned with single letter abbreviations for 

amino acids with N-terminal b ions and C-terminal y ions resulting from the amide bond cleavage.  

Specifically, in Figure 6-7B, the MS/MS analysis of the EL sample showed the 59 modified lysine 

residue at K128 confirmed by the identification of 258 Da adduct on y1 ion (147; lysine) to give a 

m/z of 405. Inherently, no cysteine modification of 59 was detected.  
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Figure 6-8A. Representative MS/MS spectrum of Enolase sample (E) with identified peptide. A single letter 

abbreviation was used to assign the peptide sequence based on fragment ions observed for the peptide. N-

terminus b ions and C-terminus y ions are labelled that resulted from peptide bond cleavage.  

 

 
Figure 6-8B. Representative MS/MS spectrum of 59 incubated Enolase sample (EL) with identified peptide. A 

single abbreviation was used to assign the peptide sequence based on fragment ions observed for the peptide 

segment. N-terminus b ions and C-terminus y ions are labelled that resulted from peptide bond cleavage. 

*Denotes the 59 adduct on lysine residue of the peptide sequence 
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 To further validate binding studies from the mass spectrometry, molecular modeling was 

done enabling 59 to be docked within the known enolase protein using MOE (Molecular Operating 

Environment) software (Figure 6-9A and 6-9B). The molecular docking structure reveals that 59 

binds covalently at the lysine residue in the enolase protein which is similar to binding amino 

residue data from mass spectrometry. 

 
Figure 6-9A. Molecular docking conformation of 59 in enolase protein 
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Figure 6-9B. The closer view of 59 at binding site residues (lysine) in the enolase protein 

 

6.3. ROLE OF TARGETED PROTEINS IN STAPHYLOCOCCUS BACTERIA 

WHICH WERE IDENTIFIED 

6.3.1. Enolase 

 Enolase is a universal enzyme found in both prokaryotic and eukaryotic organisms 

belonging to the enolase superfamily.25 The enolase protein is one of the “moonlighting proteins” 

because of its multifunctional activity.26 In bacteria such as Staphylococcus aureus, Streptococcus 

pyogenes, and Streptococcus pneumoniae the enolase protein is well distributed, and is responsible 

for its survival, as well as virulence.27 The enolase protein is expressed both as a cytoplasmic and 

a cell surface protein in primitive and higher organisms.28 The cytoplasmic enolase enzyme 

catalyzes the conversion of 2-phospho-D-glycerate to phosphoenolpyruvate (PEP) in the 

glycolysis cycle and the conversion of phosphoenolpyruvate to 2-phosph-D-glycerate in the 

gluconeogenesis cycle, as shown in Figure 6-10. The enolase enzyme is a metalloenzyme that 

requires the presence of Mg2+ divalent cations for this catalytic conversion.29 The enzymatically 
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active enolase protein occurs as a dimer in eukaryotic organisms and in an octameric form in 

prokaryotic organisms.30,31  

Zhang and Zang's group extensively studied the phosphoenolpyruvate bound and unbound 

enolase protein crystals from Staphylococcus aureus.23 The dimeric form of the enolase protein is 

commonly found in many organisms. However, the octamer structure is also present in some 

bacterial pathogens. The unbound Staphylococcus aureus enolase (Sa_enolase) belongs to the 

space group P4212, which contains two monomers that form a homodimer in the asymmetric unit. 

The Sa_enolase monomer contains a small N-terminal domain and a large C-terminal barrel 

domain. The C-terminal domains contain the active site which binds to magnesium and sulfate 

ions. The larger C-terminal domain has eight β-strands (β4-β11) and eight α-helices (α5-α12). 

These eight α/β strands are arranged as an inner barrel-like structure with β4-β11 surrounded by 

outer barrels which contains α5-α12 helices. Besides these α/β barrels, three short helices 3101, 

3102 and η1 are located in the C-terminal domain. The interaction between β1-β3 and α5 and α12 

forms a butterfly-like structure with two monomers. The four dimers of enolase are connected and 

form a ring-shaped octameric structure in unbound Sa_enolase (Figures 6-11A and 11B).23                  



www.manaraa.com

  

260 

 

 
Figure 6-10. Summary of the glycolytic metabolic pathway and the role of enolase (highlighted) in carbohydrate 

metabolism 
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Figure 6-11. (A). The ribbon diagram of the overall structure of Sa_enolase. The secondary-structural elements 

are colored cyan/red for the N-terminal domain and purple/yellow for the C-terminal barrel domain. The α-

helices and β-strands are labelled in black.  (B). The dimeric structure of Sa_enolase. The secondary-structural 

elements (β1–β3, α5, and α12) involved in dimerization are labelled in black. PEP-binding site of Sa_enolase. 

Ribbon diagrams of the dimeric structure (C) and the octameric structure (D) of the PEP-bound form of 

Sa_enolase. The two alternative conformations of the catalytic loop 1 are highlighted in red for the closed form 

and yellow for the open form. PEP is shown as sticks. 

The Sa_enolase crystals with bound PEP were formed by co-crystallization with 2-PG 

(phosphoglycerate) as the substrate. The obtained structure of PEP-bound Sa_enolase appears 
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similar to the unbound form except for a conformational change in the loop 1 (L1; residues 38-64) 

involved in the catalytic loop. The other two loops, loop 2 (L2; residues 154-163) and loop 3 (L3; 

residues 249-269) do not show any conformational modification.32 The modified conformations 

of the L1 loop are in the closed and open arrangements. The PEP-binding site located at the center 

of the C-terminal barrel domain is formed by the interaction of Lys343, Lys394, Asp318, Arg372, 

and Ser373 together with Ser42 and form loop L1 in the open conformation, whereas in the closed 

confirmation the interaction with Ser42 of loop L1 is not present (Figures 6-11C and 6-11D).23  

The surface associated enolase protein plays a major role in bacterium-host interactions 

especially in the commensal pathogens such as Staphylococcus aureus, Lactobacillus crispatus, 

and Lactobacillus johnsonii.33 The cell invasiveness of these bacteria require the degradation of 

the extracellular matrix (ECM) and basement membranes (BMs) to migrate into circulation or 

adjacent tissues. The extracellular matrix of host cells contains different components such as 

collagens, proteoglycans, elastin, and glycoproteins (laminin, fibronectin, and enactin; Figure 6-

12). 34 

Enolase plays a major role in the plasminogen-mediated disruption of the ECM and 

basement membranes. The circulating plasminogen (plg) is bound to the plasminogen receptor on 

the enolase protein rendering it immobilized.  The immobilized plg further enhances the action of 

bacterial staphylokinase (SK) and host tissue plasminogen activator (uPA/tPA) to convert 

plasminogen into active plasmin. The formed plasmin degrades laminin, fibronectin, 

proteoglycans, and gelatin by a cascade of proteolytic reactions, as shown in Figure 6-13. Plasmin 

also indirectly activates pro-collagenases, latent elastase, and pro-stromelysins to degrade 

collagen, elastin and other ECM and BMs, proteins, respectively. 24,35-37 The host controls the 

degradation by secreting the tissue plasminogen activation inhibitors (PAI) and α2-plasmin/α2 
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macroglobulin to monitor the activity of plasmin. The complete destruction of ECM and BMs 

proteins clear the way for bacteria for migration and invasion into the tissues. Also, the enolase on 

the surface of bacteria is known to bind to laminin, an important constituent of the extracellular 

matrix. The binding of enolase to laminin helps to destroy the host ECM that helps bacteria to 

enter into cells.38  

 

                     
Figure 6-12. Extracellular matrix (ECM) of host. (A). The extracellular matrix is made up of water, proteins/glycoproteins, 

and proteoglycans that often form large bundles or complexes that bind together and to the cells of the tissue. Although the 

makeup of ECM varies from tissue to tissue, it usually includes some connections to integrins in the plasma membranes, 

thereby allowing for structural integrity, as well as communication and coordination within the tissue. (B). A detailed view 

of a proteoglycan complex shows many proteoglycans, each with a protein backbone and attached carbohydrate subunits—

all held together by a polysaccharide chain. (C). Detailed view of a collagen bundle showing the individual collagen fibers 

within it. (Credit: basicmedicalkey.com) 

                                       
Figure 6-13. Simplified overview of plasminogen system and utilization by bacteria as well as degradation of 

ECM components which enables bacterial migration through tissue barriers 
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6.3.2. Dihydrolipoyllysine Residue Acetyltransferase  

 The pyruvate formed at the end of the glycolysis cycle is further oxidized to acetyl-CoA 

and CO2 in aerobic organisms. The formed acetyl-CoA participates in the citric acid cycle which 

releases stored energy and generates various biological precursors. The conversion of glycolytic 

pyruvate to acetyl-CoA is catalyzed by a multienzyme complex called pyruvate dehydrogenase 

(PD; Figure 6-14). Pyruvate dehydrogenase is part of a multi-enzyme complex (PDC) that contains 

three enzymes, pyruvate dehydrogenase (PDH), dihydrolipoyl transacetylase (DLAT), and 

diydrolipoyl dehydrogenase (DLD). 

                              
Figure 6-14. The conversion of pyruvate from glycolysis to acetyl CoA required for the Krebs cycle pathway 

catalyzed by PDC (highlighted in box, credit: sparknotes.com) 

 The conversion of pyruvate to acetyl-CoA involves five catalytic reactions mediated by 

DLAT. The acetyltransferase enzyme acts as an acceptor for the hydroxyethyl group from pyruvate 

dehydrogenase and converts lipoamide (prosthetic group) to acetyl-dihydrolipoamide (step 2 in 

Figure 6-15). In the next step, DLAT transfers the acetyl group to CoA leading to the formation of 

acetyl-CoA and dihydrolipoamide (step 3 in Figure 6-15). The enzyme domains for the attachment 
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of the lipoyl group are known to contain lysine (Lys) residues at the catalytic center (Donald Voet/ 

Judith G. Voet, Textbook of Biochemistry, 4th Edition, Wiley publisher, 2011). 

Figure 6-15. Flow diagram illustrating the overall activity of Pyruvate dehydrogenase complex protein with 

role of dihydrolipoyl transacetylase (highlighted, credit: biochempages.com) 

6.3.3. Glyceraldehyde-3-Phosphate  

 Glyceraldehyde-3-phosphate dehydrogenase is also involved in the production of ATP 

during glycolysis. It is the sixth enzyme in the glycolysis cycle, which converts glyceraldehyde-3-

phosphate (G3P) into 1, 3-bisphosphoglycerate (1, 3-BPG; Figure 6-16).  
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Figure 6-16. Catalytic conversion using Glyceraldehyde-3-phosphate dehydrogenase in the glycolysis  

 The group of Das et al.39 studied GADPH from MRSA252 (Methicillin Resistant 

Staphylococcus aureus) strains using x-ray protein crystallography. Glyceraldehyde-3-phosphate 

dehydrogenase (SaGADPH) was crystallized in the p2 space group which contained four 

molecules in the asymmetric unit 40 (Figure 6-17A). Each subunit contained a NAD+ 

(Nicotinamide adenine dinucleotide) binding domain and a catalytic domain. The NAD+ contains 

a Rossmann fold which contains a classic α/β dinucleotide binding fold. This NAD+ folds into nine 

β sheets which have βA-I residues interconnected by helices or short loops. The βD and βH run 

antiparallel to other strands. There are four helices, αB and αE interspersed in between βA and βB 

and βF and βG sheets respectively. The other two helices, αC connects βB and βC, and αE connects 

βE and βF, as shown in Figure 6-17B. 
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Figure 6-17. SaGDAPH overall structure. (A). Spatial organization of the four subunits in the asymmetric unit: 

The subunits P (cyan), O (blue), Q (magenta), and R (green) are related by a noncrystallographic 222  plane of 

symmetry on three mutually perpendicular axes designated as P, Q, and R. The P-axis is orthogonal to the 

plane of the paper. (B). A cartoon representation of monomeric SaGAPDH1: The N-terminal domain (colored 

pink) binds NAD+ (shown in sticks) while the C-terminal catalytic domain (colored blue) contains the flexible 

long S loop 

 

 The catalytic domain is comprised of eight mixed β strands (β1 to β8) and three long α 

helices (α1 to α3). The α1 links the NAD+ domain and catalytic domain. The active Cys151 

(Cysteine 151) and His178 (Histidine 178) constitutes the catalytic site. The C-terminal α3 helix 

fits into the groove of the N-terminal domain associated with various interactions with the 

coenzyme. The S loop in the catalytic domain is necessary for intersubunit interactions.39 

 In addition to its application as housekeeping protein for PCR and Western Blots, GADPH 

plays a role as a surface binding protein.39 This cell surface associated with GADPH is capable of 

binding to human transferrin to obtain access to iron required for its survival.41 There is evidence 

that cell wall activated GADPH immobilizes laminin and fibronectin, making the degradation of 

ECM and BMs easier to invade the host tissues.42 
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6.4. METHODS 

6.4.1. HPLC conditions for the compound, 59 (Ethyl (E)-4-oxo-4-(4-(prop-2-yn-1-

yloxy)phenyl)but-2-enoate)  

 The purity of propargyl ether (C-4, para) 59 was estimated to be 99.52 % using the Agilent 

Technologies 1220 Infinity LC HPLC system. The chromatographic separations were carried out 

on a Restek pinnacle II C18 column (100 mm × 4.6 mm, id 5 𝜇m). The mobile phase consisted of 

water (A) and ACN (B). The gradient elution program was as follow: 0–2 min 20 % B; 2–5 min, 

99 % B; 5–7 min, 20 % B. The flow rate of the mobile phase was 0.6 mL/min. The effluents were 

monitored at 254 nm by a photodiode array detector. A typical injection volume was 5 𝜇L. 

 

6.4.2. Preparation of Staphylococcus aureus cell lysate  

 The Staphylococcus aureus ATCC 1683 was grown at 37 °C with aeration for 2.5 h. The 

grown cells were labelled for 4 h with 59 (8 µg/mL) at rt with shaking, followed by centrifugation 

at 14,000xg for 10 min. After freezing the cells overnight, they were resuspended in PBS 
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(phosphate buffered saline) with protease inhibitor (complete, EDTA-free protease inhibitor 

cocktail, Sigma-Aldrich) to lyse the cells. Lysostaphin to a final concentration of 0.05 mg/mL and 

DNase was added followed  by incubation at 37 °C for 2 hrs. Non-lysed cells were removed by 

centrifugation (10 min at 14,000xg), and the supernatant was collected which contained cell 

membranes and cytoplasm.  The cell membranes were separated from the cytoplasm by 

ultracentrifugation (30 min at 90,000 rpm) followed by resuspension in PBS. 

6.4.3. Labeling of 59 with AF647/biotin azide using the CuAAC reaction in S. aureus lysate 

 The single reaction mixture of 100 μL volume was prepared by adding lysate (78.3 μL) 

with 8.7 μL of 10 X Click-iT reaction buffer (buffer B), 1 μL of 500 μM Alexa Fluor PCA solution, 

2 μL CuSO4-copper protectant pre-mix which included 1.2 μL of CuSO4 (Component C) and 0.9 

μL of copper protectant (Component D), and 10 μL of 1 X Click-iT buffer additive (Clik-iT Alexa 

Flour647 picoyl azide tool kit, Thermo Fisher Scientific). The reaction mixture was incubated for 

30 - 45 mins at rt protected from light. The loading buffer was added to the lysate and denatured 

by heating at 85°C for 10 min followed by slow-cooling to rt. The denatured protein was then 

subjected to SDS-PAGE gel (Invitrogen, NuPAGETM 4-12 % Bis-Tris Protein Gels), followed by 

fluorescence detection at 635/665 nm and then visualized by Coomassie blue (SimpleBlue Safe 

stain, Invitrogen) stain. In the case of unlabelled lysate with 59, the lysate was incubated with 

1mM (DMSO) 59 and left on a shaker for 12-14 h and then subjected to the CuAAC reaction. The 

same lysate procedure was followed for membrane and the cytoplasmic fractions of 

Staphylococcus aureus. In the case of a biotinylation, the biotin azide (500 µM in DMSO) was 

used instead of AF647.  
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6.4.4. Purification after the Click reaction 

 After the Click reaction, the biotinylated target protein was purified by streptavidin affinity 

chromatography. The sample was centrifuged at 3000 xg for 10 min and desalted into 100 mM 

phosphate buffer, pH 7.2 (binding buffer), and 150 mM NaCl buffer. After equilibration with 15 

CV with the binding buffer, the sample was loaded onto a 5 mL Pierce Streptavidin 

Chromatography Cartridge (product No. 87740). The biotinylated proteins were eluted with 8 M 

guanidine·HCl at pH 1.5. The proteins were concentrated using 3 kDa molecular weight cutoff 

filters (Millipore) for SDS-PAGE and later trypsin digestion. 

6.4.5. Purification of Sa_enolase 

 The coding sequences of Sa_enolase (GenBank accession code CEH25490.1) was 

optimized for expression in E. coli and synthesized by GenScript Inc (Piscataway, NJ). The 

synthetic gene was sub-cloned into the pET15b expression vector (LifeSensors Inc, Malvern, PA) 

using BamH I and Xho I restriction sites. The His6-tagged Sa_enolase fusion protein was expressed 

from E. coli BL21 Star (DE3) cells (Invitrogen Inc, Carlsbad, CA) carrying the pET15b-

Sa_enolase plasmid. Cultures were grown in Luria-Bertani medium with 100 µg/mL ampicillin at 

37 °C. When the cultures reached an OD600 between 0.6-0.8, protein expression was induced with 

0.4 mM IPTG. The temperature was reduced to 16 °C and the cultures were grown overnight with 

shaking at 250 rpm. The cells were harvested by centrifugation, resuspended in 5 mL/g of buffer 

A (25 mM TRIS pH 8.0, 300 mM NaCl, 10 mM imidazole) supplemented with 0.1 mg/mL DNAse 

I (Worthington Biochemical Corp., Lakewood, NJ). The cells were lysed using a Branson Sonifier 

S-450 cell disruptor (Branson Ultrasonics Corp., Danbury, CT) for a total of 10 min of sonication 

at 60 % amplitude with 30 s pulses separated by 50 s rest periods. The temperature was maintained 

at or below 4 °C by suspending the steel beaker in an ice bath directly over a spinning stir bar. The 
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lysate was clarified by centrifugation at 39,000 x g for 45 mins and then applied to a 5 mL HisTrap 

column (GE Lifesciences, Piscataway, NJ) at a flow rate of 5 mL/min to isolate the His6-

Sa_enolase fusion protein. The protein was eluted by a 4-step gradient of buffer B (25 mM TRIS 

pH 8.0, 300 mM NaCl, and 250 mM imidazole; 5, 15, 50, and 100%). The His6-Sa_enolase fusion 

protein eluted in the third and fourth steps and was ~90 % pure, as judged on Coomassie-stained 

SDS-PAGE gels.  The peak fractions were concentrated by using 10 kDa molecular weight cutoff 

filters. The concentrated enolase protein were loaded on the Hi-Pre Sephacryl 26/60 S-100 HR 

column to separate the dimer and octamer. The resulting octamer enolase protein was confirmed 

by SEC 300 (BIO-RAD) and was > 95% pure. The protein was desalted using a HiTrap Desalting 

column (GE Lifesciences) into 20.0 mM HEPES pH 7.5, 150 mM NaCl and stored at -80 °C. 

6.4.6. In-solution trypsin digestion 

 To the protein sample of 100 μL, an equal volume of 250 mM NH4HCO3 (Sigma-Aldrich) 

was added and vortexed to mix thoroughly. The sample was reduced with the addition of 1 μL of 

10 mM dithiothreitol (Sigma-Aldrich) and incubated at 37 °C for 45 mins. After reduction, the 

sample was alkylated with 5 μL of 55 mM iodoacetamide (Sigma-Aldrich) followed by incubation 

in the dark for one hour at rt. The digestion was performed with trypsin (Trypsin Gold, Promega) 

in the ratio of trypsin to sample protein of 1:20 at pH 8 overnight. The next day, the pH of the 

sample was adjusted to just less than 7.0 with 10% formic acid (Fisher Scientific) and evaporated 

using speedvac. The sample was stored at -20 °C until followed by ziptip cleanup and analysis by 

mass spectrometry. 

6.4.7. Desalting of tryptic peptides 

 The trypsin digested samples were dissolved in 25 µL of 0.1% TFA and centrifuged for 5 

min at 5000 rpm. The 20 µL of supernatant was taken for desalting with C18 resin-packed ZipTip 
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pipette tips (EMD Millipore), according to the manufacturer's instructions. The peptides were then 

dried in a speedvac concentrator almost to complete dryness. The dried peptide samples were 

dissolved in 30 µL of 5% acetonitrile/0.1% formic acid solution for analysis by mass spectrometry.  

6.4.8. Analysis by LC-MS/MS  

 The desalted tryptic peptides were separated by a C18 capillary column (10 cm x 75 µm 

packed with 3µm Michrom Magic C18 AQ) on an AB Sciex Eksigent Nano-2D pump equipped 

with the 920AS autosampler. The peptides were eluted over a 120 min gradient from buffer A 

(H2O, 0.1% formic acid) to buffer B (acetonitrile, 0.1% formic acid) at 300 nl/min. The gradient 

started with 2 min at 2% B, followed by a 75 min ramp to 30% B, a 10 min ramp to 95% B, 3 min 

at 95% B, 10 min ramp to 2% B, then a 20 min equilibration in 2% B. The eluted peptides 

underwent electrospray ionization followed by data acquisition in a Thermo Scientific LTQ-

Orbitrap Velos mass spectrometer. MS1 scans were detected in the FTMS section of the Orbitrap 

Velos in profile mode at a resolution of 60,000 (full width of the peak at half-maximum at 400 

m/z). The 10 most abundant parent ions from each MS1 scan were selected for fragmentation via 

collision-induced dissociation with a normalized collision energy of 35% for MS2 scans in the 

LTQ section of the instrument. Dynamic exclusion settings omitted any mass observed more than 

once in a 30 s interval from selection for fragmentation.  The data analysis was performed with 

MaxQuant 1.4.1.2 against the Uniprot database for Escherichia coli and Staphylococcus aureus 

(release date June 22, 2016). Search parameters included trypsin cleavage (K, R), and the fixed 

modification of cysteine alkylation, differential modification of methionine oxidation, and 59 

molecule adduct on cysteine and lysine residues.  
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6.4.9. Enolase Crystallization 

 Initial crystallization conditions were identified by screening 11.5 mg/mL enolase with 10 

fold of 59 against the Index HT screen (Hampton Research) and PEG/Ion screen (Hampton 

Research). The drops contained 1 μL of protein solution at 11.5 mg/mL and 1 μL of crystallization 

solution. There are 12 conditions showed below: 1, 1.0 M Ammonium sulfate, 0.1 M Bis-Tris pH 

5.5, 1% w/v Polyethylene glycol 3350; 2, 0.2 M Ammonium sulfate, 0.1 M BisTris pH 6.5, 25% 

w/v Polyethylene glycol 3350; 3, 0.2 M Lithium sulfate monohydrate, 0.1 M BisTris pH 6.5, 25% 

w/v Polyethylene glycol 3350; 4, 0.2 M Lithium sulfate monohydrate, 0.1 M HEPES pH 7.5, 25% 

w/v Polyethylene glycol 3350; 5, 0.2 M Ammonium sulfate, 0.1 M HEPES pH 7.5, 25% w/v 

Polyethylene glycol 3350; 6, 0.2 M Potassium chloride, 0.05 M HEPES pH 7.5, 35% v/v 

Pentaerythritol propoxylate (5/4 PO/OH); 7, 0.2 M Potassium sodium tartrate tetrahydrate, 20% 

w/v Polyethylene glycol 3350; 8, 0.2 M Lithium citrate tribasic tetrahydrate, 20% w/v 

Polyethylene glycol 3350; 9, 8% v/v TacsimateTM pH 7.0, 20% w/v Polyethylene glycol 

3350; 10, 0.2 M Succinic acid pH 7.0, 20% w/v Polyethylene glycol 3350; 11, 0.2 M Ammonium 

citrate tribasic pH 7.0, 20% w/v Polyethylene glycol 3350; 12, 0.04 M Citric acid, 0.06 M BIS-

TRIS propane (final pH 6.4 after mixing), 20% w/v Polyethylene glycol 3350. Different shapes of 

crystals were formed in ~2 weeks. These crystals were looped and soaked in the well solution with 

20% v/v glycerol. However, these crystals did not diffract well; this may be due to the 

cryoprotectant or the crystals need more optimization. 
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CHAPTER 7 

A NOVEL SYNTHETIC METHOD FOR THE SYNTHESIS OF THE KEY 

QUININE METABOLITE (3S)-3-HYDROXYQUININE 

7.1. INTRODUCTION 

 Cinchona alkaloids remain unique among the thousands of natural products isolated and 

characterized to date, which comprise quinine, quinidine, cinchonine, and cinchonidine as primary 

members. Discovery of the antimalarial properties of Cinchona alkaloids resulted early on in the 

exploration and successful applications of these alkaloids in studies on stereochemistry, 

asymmetric synthesis, and medicinal chemistry.1 The role of Cinchona alkaloids in organic 

chemistry, as discovered by Pateur in 1853, was their ability to resolve racemic mixtures by the 

crystallization of diastereomeric salts. Apart from racemate resolutions, the Cinchona alkaloids 

promote enantioselective transformations in both homogeneous and heterogeneous catalysis, as 

shown by Sharpless and others.2 

 Malaria is a protozoan disease which infects humans and is caused by five different species 

of the genus Plasmodium (P. falciparum, P. vivax, P. ovale, P. malariae, and P. knowlesi) and is 

transmitted by Anopheles mosquitos.3 Despite the availability of many effective antimalarial drugs, 

the prevalence of malaria remains as one of the most common reasons for millions of deaths 

worldwide.4 Among the Cinchona alkaloids quinine was the first, pure and active 

chemotherapeutic agent which had a high impact on human civilization that saved many lives. 

Even today with resistance increasing to drugs to treat malaria, quinine can compete with the new 

novel classes of antiplasmodial agents and still stands out as an important antimalarial drug.1  
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 The pharmacological response of any drug molecule depends on the properties of the drug 

and the biotransformation products, of which metabolism plays a significant role. The elimination 

of quinine from humans is primarily by hepatic metabolism although nearly 20% of the drug is 

excreted in unchanged form through the urine.5,6 Although several metabolites have been isolated 

and characterized from quinine, the exact contribution of different isoforms of CYP 450 involved 

in the biotransformation pathway is still not clear. The analysis of quinine metabolites from human 

urine by Liddle et al. identified 6ʹ-hydroxycinchonidine (O-desmethylquinine), 6ʹ-

hydroxydihydrocinchonidine, 3-hydroxydihydroquinine, quinine-10,11-epoxide and quinine-

10,11-dihydrodiol as metabolites accompanied by the major metabolite 3-hydroxyquinine.7 

Studies of in vitro human liver microsomal incubation of quinine reveled that (3S)-3-

hydroxyquinine and the N-oxide products are the major metabolites. They are catalyzed by 

cytochrome P450 3A4 enzymes and CYP2C19 to a minor extent.8-10 Quinine and its diastereomer 

quinidine are known to be metabolized similarly which resulted in the formation of 3(S)-3-

hydroxyquinidine as the major metabolite of quinidine, as well as the minor metabolites quinidine-

N-oxide and 2ʹ-quinidinone. Again these transformation were effected by cytochrome P450 

enzymes.11 Several studies have been performed to determine the CYP 450 isoforms responsible 

for the metabolism of quinine and the formation of 3-hydroxyquinine. Both quinine and 3-

hydroxyquinine are known to interfere with other drugs when used in combination for they 

participate in drug-drug interactions with other classes of drugs. The work by Wanwimolruk et 

al.11,12 showed that clearance of quinine be metabolism was increased 77 % by smoking and 69 % 

by use in combination with rifampicin. The later drug is a CYP 3A4 inducer,13 pretreatment of 

which indicated quinine metabolism was mediated by CYP 450 3A. However, there was also 

strong evidence that cigarette smoking induces CYP1A14,15 rather than CYP3A enzymes. The 
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potent CYP 450 3A4 enzyme inhibitor ketoconazole16 reduced the oral clearance of quinine and 

formation of 3-hydroxy quinine which again demonstrated involvement of cytochrome P450 3A4 

isoform, this time in healthy volunteers.17 

 In another study by Soyinka et al.,18 the co-administration of anti-retroviral drug ritonavir 

(CYP3A4 inhibitor) with quinine in healthy volunteers decreased the metabolism of quinine 4.5 

fold rather than subjects receiving quinine alone. The quinine also had increased the clearance of 

ritonavir four fold, and this was due to the displacement of ritonavir at the inhibition site of CYP 

3A4 by quinine. The amount and clearance of quinine in the plasma were quantified using its 

metabolite 3-hydroxy quinine.18 Based on this interaction a clear conclusion could be drawn that 

the doses of quinine should be decreased in the treatment of HIV patients infected with malaria to 

avoid any toxic side effects. In another study by Igbinoba et al. explained the influence of honey 

on the metabolism of the quinine.19 This indicated that honey in Nigeria altered the drug 

metabolizing enzymes because of the presence of quercetin, kaempferol, and luteolin. However, 

the interference of honey on the metabolism of quinine was not prominent even at high and low 

doses of honey with very little or no effect on the formation of 3-hydroxy quinine.20  

7.2. RESULTS AND DISCUSSION 

 The metabolic biotransformation of quinine and its interaction with the other drugs 

primarily effects the in vivo biosynthesis of the major metabolite 3-hydroxyquinine. All previous 

studies reported it as 3(S)-3-hydroxyquinine based on very old data and not unambiguous results. 

Previously, the 3-hydroxyquinine was synthesized from quinine by Diaz-Arauzo et al.21 and Sarma 

et al.22 Interestingly, Sarma, Zeng et al.22 synthesized the major metabolite of quinine, 3(S)-3-

hydroxyquinine (7), and separated it from its epimeric mixture at C-3 by converting it into the 

corresponding acetate esters (8 and 9) and this was followed by column chromatography. The 
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overall yield of 7, as reported,22 previously was 16% and a few key steps occurred in low yields 

which one sought to improve on in a continued effort. The approach to 7 was to shorten the number 

of steps, as well as eliminate the harsh conditions and reagents which had been employed such as 

aqueous HBr, HBr gas, and pyridine. At first, the search to bypass the use of HBr gas was because 

of inavailability and numerous Government regulations. After a comprehensive literature survey, 

RhCl3·3H2O catalyzed alkene isomerization was found.23 As shown in Scheme 7-1, gratiflyingly 

RhCl3·3H2O catalyzed isomerization of quinine (1) to the C(10)–C(11) olefin and this was 

followed by protection of the C-9 hydroxy group as its acetate. This gave olefin 3 in excellent yield 

using only Ac2O in the absence of base (pyridine). It is likely the quinine N atoms react with Ac2O 

to form the corresponding acyl ammonium species, which in turn reacts with the neighboring 

hydroxy group intramolecularly to give the corresponding acetate 3. Without further purification, 

the osmium tetroxide catalyzed dihydroxylation was performed on acetate 3 using K3[Fe(CN)6] as 

an oxidant to give diol 4. This diol was subsequently converted into the key intermediate carbonyl 

compound 5 on treatment with NaIO4 as an oxidative reagent under acidic conditions. This gave 

the ketone 5 in good yield.  As shown in Scheme 7-1, the Grignard reaction with vinyl magnesium 

bromide on ketone 5 gave an epimeric mixture of hydroxy quinines 6 and 7, obtained in a 1:4 ratio, 

with an almost identical Rf value. The two alcohols were inseperable by flash column 

chromatography on either silica gel or alumina. In order to separate the epimeric mixture 6 and 7, 

these alcohols were converted into the acetate analogs 8 and 9 by treatment with Ac2O in THF at 

room temperature. As shown in Scheme 7-1, the major acetate diastereomer 9 was crystallized 

from a two solvent system which contained CH2Cl2-hexane. The crystals were subjected to X-ray 

crystallographic analysis via Cu source at low temperature to confirm the absolute configuration. 

Subsequent hydrolysis of 9 under basic conditions with K2CO3 in methanol furnished pure 3(S)-
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3-hydroxyquinine (7) and the spectrum was identical to that from the previous multistep route.22 

Furthermore, the pure two isomers S and R of 3-hydroxyquinine and corresponding 9-aceto 

analogues are now available for biological studies of the major and trace metabolites of quinine. 

 With authentic samples of the hydroxy isomers 6 and 7 (desired) in hand, this stimulated 

the development of a the short and concise diastereoselective synthetic route which would be a 

step protocol for allylic hydroxylation on quinine (1) by SeO2, as shown in Scheme 7-2. However, 

this failed to give the desired hydroxy isomer 7 with quinine (1), and acetyl protected quinine (10). 

Extensive review of the literature revealed that an epimeric mixture at C-3 of substituted 3-

hydroxyquinine could be converted into single 3(S)-3-hydroxyquinine by a Mislow-Evans 

rearrangement24 using benzenesulfenyl chloride under basic conditions, as shown in Scheme 7-3. 

This is a possible pathway one can explore but it also fraught with difficulties particularly because 

of the presence of the 9-hydroxy group. Attention must be paid to the C-9 dehydration reaction 

and is ongoing in our laboratories. 
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Scheme 7-1. Synthesis of 3(S)-3-hydroxyquinine (7) 

 

 

 

                                                             
Scheme 7-2. Attempts to synthesize 3(S)-3-hydroxyquinine (7) by one step using SeO2 
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Scheme 7-3. Proposed mechanism for converting an epimeric mixture at C-3 of 3-hydroxyquinine 

diastereomers to a single 3(S)-3-hydroxyquinine (7) by a Mislow-Evans rearrangement24  

 

7.3. CONCLUSION 

 The major metabolite of the antimalarial Cinchona alkaloid quinine (1) 3(S)-3-

hydroxyquinine (7), has been synthesized by a shorter route and separated from its epimeric 

mixture (4(S): 1(R)) at C-3 by conversion into the 9-aceto analogue. This was followed by flash 

column chromatography and hydrolysis to provide gram quantities of 7. The synthesis was 

accomplished devoid of previously employed toxic reagents hydrogen bromide gas and the hard 

to remove base pyridine. This synthetic protocol increased the overall yield from 16% to 53%. 

This makes very important metabolite 7 more readily available now for scientists to study drug-

drug interactions when using quinine with another agent to treat malaria combined with HIV or 

other diseases. The development of a diastereoselective synthesis is ongoing for an even shorter 

synthetic route to 3(S)-3-hydroxyquinine (7). For instance, a doctor in Nigeria, using 7 found that 
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in healthy volunteers, to treat patients with HIV and malaria one needed a ratio of ~5:1 ritonavir 

and quinine, not 1:1, as used previously. 

7.4. EXPERIMENTAL 

 The compounds 6-10 were synthesized as described previously in the literature.21-23 

7.4.1. (R)-((1S,2S,4S)-5-ethylidenequinuclidin-2-yl)(6-methoxyquinolin-4-yl)methanol (2) 

 An oven-dried round bottom flask was charged with quinine 1 (6 g, 18.49 mmol), EtOH 

(110 mL), conc H2SO4 (2 mL) under a positive pressure of argon and the reaction mixture, which 

resulted, was stirred for 10-15 mins at rt. The formation of a white slurry was observed. The 

RhCl3·3H2O (150 mg, 0.55 mmol) was then added and the mixture was heated at reflux for 4 h 

under argon. After the evaporation of the EtOH, the mixture was diluted with CHCl3 (150 mL), 

brought to the alkaline pH (pH paper) with 10% aq K2CO3 soultions. The organic layer was washed 

with brine, dried (K2CO3), and concentrated under vacuum to yield a brown colored amorphous 

solid 2 (5.9 g, 98%, 5% MeOH in CHCl3) which was used directly in the next reaction without 

further purification.  

7.4.2. (R)-((1S,2S,4S)-5-ethylidenequinuclidin-2-yl)(6-methoxyquinolin-4-yl)methyl acetate (3) 

 The solution of the crude 2 (4.8 g, 15 mmol) in anhydrous THF (50 mL) was cooled to 0 

ºC and then Ac2O (1.7 ml, 18.15 mmol) was added under a positive pressure of argon. The reaction 

mixture, which resulted, was stirred for 10-15 min at 0 ºC and then allowed to warm to rt and 

stirred for 17 h. The reaction progress was monitored by TLC (silica gel, 5% MeOH in CHCl3). 

After the disappearance of starting materials, the reaction mixture was diluted with CHCl3, washed 

with a sat aq NaHCO3 solution, brine, dried (K2CO3), and concentrated under vacuum to furnish 

acetate 3 as a yellow colored amorphous solid (5 g, 91%), which was used for the next reaction 

without further purification.  
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7.4.3. (R)-((1S,2S,4S)-5-hydroxy-5-(1-hydroxyethyl)quinuclidin-2-yl)(6-methoxyquinolin-4-

yl)methyl acetate (4) 

 The crude acetate 3 (5.1 g, 14 mmol) was dissolved in t-BuOH-H2O (5:1, 102 mL). To this 

reaction mixture at rt were added in this order of K2CO3 (4.62 g, 33.6 mmol), K3[Fe(CN)6] (11 g, 

33.6 mmol), and OsO4 (127.1 mg, 7 mmol). The reaction mixture, which resulted, was stirred for 

16 h at rt and the progress was monitored by TLC (silica gel, 10% MeOH in CHCl3). After the 

disappearance of starting material, the reaction mixture was quenched by the addition of a sat 

solution of aq NaHSO3 and washed with brine. The mixture was diluted with CHCl3 and filtered 

through celite which was washed with CHCl3. The CHCl3 filtrate and washings were combined, 

washed with brine, dried (K2CO3), and concentrated under vacuum to give diol 4 as a yellow 

colored amorphous solid (5 g, 90%) which was used for the next reaction without further 

purification.  

7.4.4. (R)-(6-Methoxyquinolin-4-yl)((1S,2S,4S)-5-oxoquinuclidin-2-yl)methyl acetate (5) 

 To a solution of crude diol 4 (5.35 g, 13.35 mmol) in AcOH-H2O (4:1, 100 mL) was added 

NaIO4 (3.04 g, 14.22 mmol) at rt under a positive pressure of argon. The reaction mixture which 

resulted, was then stirred for 3 h at rt. After the disappearance of starting material as indicated by 

TLC (silica gel, 10% MeOH in CHCl3), the reaction mixture was subjected to evaporation, then 

brought to alkaline pH (pH paper) with 10% aq K2CO3 solution, and extracted with CHCl3 (2 × 

100 mL). The combined organic extracts were washed with brine, dried (K2CO3), and concentrated 

under vacuum to yield the crude ketone 5. This material was further purified by flash column 

chromatography (silica gel, 5% MeOH in CHCl3) to furnish the ketone 5 as a pale yellow colored 

solid (4 g, 85%); mp: 149-150 ºC (lit21 150 ºC); 1H NMR (500 MHz, CDCl3) δ 8.77 (d, J = 4.5 Hz, 

1H), 8.10 (d, J = 9.2 Hz, 1H), 7.49 – 7.40 (m, 2H), 7.38 (d, J = 4.5 Hz, 1H), 6.66 (d, J = 6.6 Hz, 



www.manaraa.com

  

287 

 

1H), 4.00 (s, 3H), 3.50 (q, J = 8.3 Hz, 1H), 3.41-3.35 (m, 1H), 3.32-3.17 (m, 2H), 2.92 – 2.80 (m, 

1H), 2.58 (s, 1H), 2.24 – 2.09 (m, 7H); HRMS (ESI-TOF) (M+H)+ calcd for C20H23N2O4: 

355.1652, found: 355.1653. The spectral data of 5 are in excellent agreement with the published 

values.21,22 

7.5. REFERENCES 

 

(1) Kacprzak, K. M. In Natural Products: Phytochemistry, Botany and Metabolism of 

Alkaloids, Phenolics and Terpenes; Ramawat, K. G., Mérillon, J.-M., Eds.; Springer 

Berlin Heidelberg: Berlin, Heidelberg, 2013, p 605. 

(2) Song, C. E. In Cinchona Alkaloids in Synthesis and Catalysis; Wiley-VCH Verlag GmbH 

& Co. KGaA: 2009. 

(3) Kantele, A.; Jokiranta, T. S. Clin. Infect. Dis. 2011, 52, 1356. 

(4) Alonso, P. L.; Brown, G.; Arevalo-Herrera, M.; Binka, F.; Chitnis, C.; Collins, F.; 

Doumbo, O. K.; Greenwood, B.; Hall, B. F.; Levine, M. M.; Mendis, K.; Newman, R. D.; 

Plowe, C. V.; Rodriguez, M. H.; Sinden, R.; Slutsker, L.; Tanner, M. PLoS Med. 2011, 8, 

e1000406. 

(5) White, N. J. Br. J. Clin. Pharmacol. 1992, 34, 1. 

(6) Krishna, S.; White, N. J. Clin. Pharmacokinet. 1996, 30, 263. 

(7) Liddle, C.; Graham, G. G.; Christopher, R. K.; Bhuwapathanapun, S.; Duffield, A. M. 

Xenobiotica 1981, 11, 81. 

(8) Zhao, X. J.; Yokoyama, H.; Chiba, K.; Wanwimolruk, S.; Ishizaki, T. J. Pharmacol. Exp. 

Ther. 1996, 279, 1327. 

(9) Zhang, H.; Coville, P. F.; Walker, R. J.; Miners, J. O.; Birkett, D. J.; Wanwimolruk, S. 

Br. J. Clin. Pharmacol. 1997, 43, 245. 

(10) Kolars, J. C.; Schmiedlin-Ren, P.; Schuetz, J. D.; Fang, C.; Watkins, P. B. J. Clin. Invest. 

1992, 90, 1871. 

(11) Wanwimolruk, S.; Wong, S. M.; Zhang, H.; Coville, P. F. Journal of Liquid 

Chromatography & Related Technologies 1996, 19, 293. 

(12) Wanwimolruk, S.; Wong, S. M.; Zhang, H.; Coville, P. F.; Walker, R. J. J. Pharm. 

Pharmacol. 1995, 47, 957. 

(13) Oesch, F.; Arand, M.; Benedetti, M. S.; Castelli, M. G.; Dostert, P. J. Antimicrob. 

Chemother. 1996, 37, 1111. 



www.manaraa.com

  

288 

 

(14) Combalbert, J.; Fabre, I.; Fabre, G.; Dalet, I.; Derancourt, J.; Cano, J. P.; Maurel, P. Drug 

Metab. Dispos. 1989, 17, 197. 

(15) Ged, C.; Rouillon, J. M.; Pichard, L.; Combalbert, J.; Bressot, N.; Bories, P.; Michel, H.; 

Beaune, P.; Maurel, P. Br. J. Clin. Pharmacol. 1989, 28, 373. 

(16) Sai, Y.; Dai, R.; Yang, T. J.; Krausz, K. W.; Gonzalez, F. J.; Gelboin, H. V.; Shou, M. 

Xenobiotica 2000, 30, 327. 

(17) Seif El-Din, S. H.; Abdel-Aal Sabra, A. N.; Hammam, O. A.; El-Lakkany, N. M. Korean 

J. Parasitol. 2013, 51, 165. 

(18) Soyinka, J. O.; Onyeji, C. O.; Omoruyi, S. I.; Owolabi, A. R.; Sarma, P. V.; Cook, J. M. 

Br. J. Clin. Pharmacol. 2010, 69, 262. 

(19) Chen, L.; Mehta, A.; Berenbaum, M.; Zangerl, A. R.; Engeseth, N. J. J. Agric. Food 

Chem. 2000, 48, 4997. 

(20) Igbinoba, S. I.; Akanmu, M. A.; Onyeji, C. O.; Soyinka, J. O.; Owolabi, A. R.; Nathaniel, 

T. I.; Pullela, S. V.; Cook, J. M. J. Clin. Pharm. Ther. 2015. 

(21) Diaz-Arauzo, H.; Cook, J. M.; Christie, D. J. J. Nat. Prod. 1990, 53, 112. 

(22) Srirama Sarma, P. V.; Han, D.; Deschamps, J. R.; Cook, J. M. J. Nat. Prod. 2005, 68, 

942. 

(23) Nakano, A.; Ushiyama, M.; Iwabuchi, Y.; Hatakeyama, S. Adv. Synth. Catal. 2005, 347, 

1790. 

(24) Majetich, G.; Song, J. S.; Ringold, C.; Nemeth, G. A.; Newton, M. G. J. Org. Chem. 

1991, 56, 3973. 

 

 



www.manaraa.com

289 

 

 

APPENDIX A 

IDENTIFICATION OF STAPHYLOCOCCUS AUREUS CELLULAR PATHWAYS 

AFFECTED BY THE STILBENOID LEAD DRUG SK-03-92 USING A 

MICROARRAY 
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ABSTRACT 31 

Since the mechanism of action for a new lead stilbene compound coded SK-03-92 with 32 

bactericidal activity against methicillin-resistant S. aureus (MRSA) is unknown, an mRNA 33 

microarray was performed on SK-03-92 treated versus untreated S. aureus to examine 34 

transcriptional changes occurring after drug treatment.  A total of 14 genes were up-regulated 35 

and 38 genes down-regulated by SK-03-92 drug treatment.  Genes involved in sortase A 36 

production, protein metabolism, and transcriptional regulation were up-regulated, whereas genes 37 

encoding various transporters, purine synthesis proteins, and a putative two-component system 38 

[TCS; SACOL2360 (MW2284) and SACOL2361 (MW2285)] were down-regulated by SK-03-92 39 

treatment.   Quantitative real-time polymerase chain reaction analyses (qRT-PCR) validated up-40 

regulation of srtA and tdk as well as down-regulation of the MW2284/MW2285 and purine 41 

biosynthesis genes in the drug treated population.  A qRT-PCR analysis of MW2284 and 42 

MW2285 mutants compared to wild-type cells demonstrated that the srtA gene was up-regulated 43 

by both putative two-component regulatory gene mutants compared to the wild-type strain.  44 

Using a transcription profiling technique, we have identified several cellular pathways regulated 45 

by SK-03-92 drug treatment, including a putative TCS that may regulate srtA and other genes 46 

that could be tied to the SK-03-92 mechanism of action and drug persisters. 47 

  48 



www.manaraa.com

293 

 

1.  INTRODUCTION 49 

Staphylococcus aureus is a common inhabitant of the human body, but it causes 50 

numerous infections that include skin and soft tissue infections as well as more serious 51 

infections, such as pneumonia and bacteremia [1].  Presently, around 60% of S. aureus clinical 52 

isolates are methicillin-resistant S. aureus (MRSA)[2], and the species is a leading cause of 53 

nosocomial infections in the United States [3].  Many healthcare facilities in the United States 54 

have endemic problems with MRSA [3, 4].  In 1997, community-associated methicillin-resistant 55 

S. aureus (CA-MRSA) strains emerged in the United States, causing infections in younger 56 

people, including necrotizing pneumonia [5-7].  Although skins infection caused by CA-MRSA 57 

are still very prevalent, invasive MRSA infections have decreased [3, 8].  Besides methicillin 58 

resistance, CA-MRSA strains are becoming multidrug resistant at an alarming rate [9-11].   59 

Vancomycin-heteroresistant and vancomycin-resistant strains of S. aureus have led to 60 

vancomycin no longer being effective against all strains of S. aureus [12-15].  Tolerance to 61 

vancomycin now has been reported to be as low as 3% and as high as 47% [16, 17].   New drugs 62 

are needed to treat MRSA infections; however, most of the drugs currently being developed are 63 

derivatives of current drugs already being marketed [18, 19].  S. aureus is one of the ESKAPE 64 

pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter 65 

baumannii, Pseudomonas aeruginosa, and Enterobacter species) targeted by the 10 X ’20 66 

initiative to develop 10 new, safe and effective antibiotics approved by 2020 [20]. 67 

As part of an endeavor to discover a new antibiotic to treat drug resistant strains of S. 68 

aureus, we identified (E)-3-hydroxy-5-methoxystilbene from Comptonia peregrina (L.) Coulter 69 

(“sweet fern”) [21] with promising activity against S. aureus.  A structure activity relationship 70 

analysis identified our lead compound, (E)-3-(2-(benzo[b]thiophen-2-yl)vinyl)-5-71 
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methoxyphenol, “SK-03-92”.  SK-03-92 was rapidly bactericidal against every Gram-positive 72 

species that was tested, including MRSA strains [22].  A combined safety and pharmacokinetic 73 

study demonstrated that the SK-03-92 lead drug was safe in mice [23].   Although SK-03-92 74 

drug killed 90% of the population in a matter of minutes, a high number of SK-03-92 drug 75 

persister cells remained.  76 

Drug persisters are phenotypically different than the parent strain, but are not true drug 77 

resistant variants because the MICs of the drug persisters are the same as their parent strains [24, 78 

25].  Persisters are thought to be a major component of bacterial biofilms, allowing significant 79 

drug tolerance [26, 27].  Many drugs used to treat S. aureus infections have drug persister 80 

population emerge that are recalcitrant to treatment [28-30].  81 

 In this study, the effect of SK-03-92 on S. aureus cells was tested using an RNA 82 

microarray that compared SK-03-92 treated versus untreated S. aureus MW2 cells.  More than 83 

twice as many genes were transcriptionally down-regulated as compared to up-regulated, 84 

including two genes that may be part of a novel two-component system (TCS) in S. aureus that 85 

could be tied to the mechanism of action or drug persisters. 86 

  87 



www.manaraa.com

295 

 

2.  RESULTS AND DISCUSSION 88 

General transcriptome response of SK-03-92 treatment 89 

New drugs to treat S. aureus infections are still needed, and a new lead compound,  90 

SK-03-92, could be a possibility.  SK-03-92 has a stilbenoid backbone [22] and is bactericidal 91 

within 20 min.  The SK-03-92 lead compound showed promising in vitro activity against all 92 

strains of S. aureus that were tested [22], but the mechanism of action remained elusive.  In an 93 

attempt to ascertain the effects of SK-03-92 treatment on the transcriptome of S. aureus and 94 

possibly elucidate the mechanism of action for the drug, total RNA was isolated from S. aureus 95 

MW2 cells (Table 1) treated for 30 with SK-03-92 drug or untreated cells.  A total of 52 genes 96 

were dysregulated by the SK-03-92 drug treatment (Table 3), representing a mere 2% of the total 97 

S. aureus transcriptome.   Microarrays done with other bactericidal compounds have shown a 98 

much broader effect on the S. aureus transcriptome, including ortho-phenylphenol (24%)[31], 99 

amicoumacin A (20%)[32], and daptomycin (5 to 32%)[33, 34].  100 

Another observation from this analysis was the number of down-regulated genes (38, 101 

73%) greatly surpassed the number of up-regulated genes (14, 27%).  An examination of genes 102 

affected by pterostilbene, another stilbenoid drug, in Saccharomyces cerevisiae showed 1189 103 

genes that were dysregulated: 1007 up-regulated (85%) and 182 down-regulated (15%) [35].  104 

Microarray analysis with resveratrol treated Schizosaccharomyces pombe showed 480 genes 105 

dysregulated, 377 genes that were up-regulated and 103 that were down-regulated [36].  RNA 106 

sequence analysis of resveratrol treated S. aureus cells demonstrated 444 dysregulated genes, 107 

201 up-regulated and 243 down-regulated [37].  The majority of the genes in our study had a 108 

two- to four-fold difference in transcription when comparing SK-03-92 drug treated versus 109 

untreated S. aureus cells.  Only three genes had a 10-fold or higher change in transcription, 110 
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which included two genes annotated to be part of a putative TCS [SACOL2360 (annotated as 111 

MW2284 in MW2 strain) = 14.1-fold lower and SACOL2361 (annotated as MW2285 in MW2 112 

strain) = 26.9-fold lower] as well as the glpD gene encoding glycerol-3-phosphate 113 

dehydrogenase (10-fold higher).   114 

GlpD funnels electrons into the respiratory chain via quinone reduction coupled to the 115 

oxidation of glycerol-3-phosphate to glycerone phosphate (dihydroxyacetone phosphate) [38], 116 

which can be enzymatically or non-enzymatically transformed into methylglyoxal (MG) [39].   117 

Higher concentrations of methylglyoxal are thought to halt bacterial growth by damaging 118 

proteins and other cell components by acting as protein glycating agent that affects mainly 119 

arginine residues [40, 41] as well as being associated with drug persistence in Escherichia coli 120 

[42] and S. aureus [34].  Overexpression of GlpD increased the number of persisters present in 121 

stationary phase in an E. coli expression library, whereas deletion of glpD decreased persister 122 

production in late exponential and stationary phase cells [42].  Endogenous addition of MG 123 

increased the number of persisters in a dose-dependent manner in wild-type E. coli [43].  124 

Dysregulation of transport genes by SK-03-92 drug 125 

By inspecting the genes that were differentially expressed, 12 potentially involved in 126 

transport were all down-regulated: SACOL0086, SACOL0155, SACOL0178 (scrB), SACOL0400 127 

(ulaA), SACOL0454, SACOL1018, SACOL1872 (epiE), SACOL2146 (mtlA), SACOL2333, 128 

SACOL2573 (copZ), SACOL2664 (manA), and SACOL2718.  These genes encoded proteins 129 

involved in anion transport, a cation efflux family protein, two phosphotransferase system (PTS) 130 

transporters, a sodium:alanine symporter, sodium:dicarboxylase symporter family protein, and a 131 

copper ion binding protein.  Lower expression of these transport proteins may contribute to death 132 

of the S. aureus cells because toxic intermediates may not be transported out of the bacterial cell 133 
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(e.g., copper transport)[44] or important biomolecules needed by the bacterial cell are not 134 

transported inside. 135 

Transcriptional dysregulation of programmed cell death genes by SK-03-92  136 

An interesting observation was dysregulation of genes tied to programmed cell death 137 

(PCD).  Both the lrgA and cidB genes had decreased transcription, forming a holing/antiholin 138 

system mediating autolysis, a form of prokaryotic PCD that is analogous to bcl-2 pro-apoptotic 139 

effector and anti-apoptotic family members [45, 46].  The Cid/Lrg (holin/antiholin) system 140 

controls autolysis and affects the distribution of extracellular DNA in S. aureus during biofilm 141 

development [47-49]. 142 

SK-03-92 drug disrupts metabolic genes 143 

A total of 24 genes involved in metabolism were dysregulated by SK-03-92 treatment.  144 

Ten of the genes were up-regulated and 14 genes were down-regulated.  Three of the genes were 145 

tied to lipid metabolism.  The glpD gene described above was up-regulated, but the other two 146 

genes affected (fabZ and pnbA) were down-regulated by the drug treatment.   Following 147 

treatment of S. aureus with betulinaldehyde (a pentacyclic triterpenoid), fabZ transcription was 148 

also shown to be down-regulated [50].  The β-hydroxyacyl-dehydratase FabZ is required for lipid 149 

synthesis, catalyzing the third step in elongation of the fatty acid chain. FabZ is also involved in 150 

beta oxidation of fatty acids.  A decrease in FabZ activity would not only decrease fatty acid 151 

biosynthesis, disrupting membrane production and repair, but also eliminate fatty acids as a 152 

potential source of acetyl Co-A and reducing power [51].  PnbA is a para-nitrobenzyl esterase 153 

that causes de-esterification of cephalosporin drugs in Bacillus sp. and S. aureus [52].   154 

Other genes were tied to DNA metabolism as well as purine and pyrimidine synthesis.  155 

One DNA metabolism gene, SACOL2329 (rpiA), that was down-regulated encodes for 3.5 156 
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ribose-5-phosphate isomerase A, the first step in the pentose phosphate pathway that provides 157 

precursors for the synthesis of amino acids, vitamins, nucleotides, and cell wall components [53].   158 

Three genes associated with purine synthesis were down-regulated: purD, purH, and 159 

purL, encoding phosphoribosylformylglycinamidine synthase II (step four in de novo purine 160 

synthesis), phosphoribosylamine-glycine ligase (step two in de novo purine biosynthesis), and 161 

phosphoribosylaminoimidazolecarboxamide formyltransferase/IMP cyclohydrolase, 162 

respectively.  Purine metabolism is a necessary part of DNA synthesis and energy production in 163 

S. aureus [54].   Other studies have demonstrated that genes involved in purine metabolism are 164 

down-regulated after treatment with a drug or plant extract [55-57].  Moreover, less purine 165 

metabolism is often tied to drug persister populations [58-59].  Disruption of nucleotide 166 

metabolism in a library of S. aureus transposon insertion mutants caused a decrease in persister 167 

formation frequency when treated with rifampicin [60].   168 

In addition, one gene associated with pyrimidine synthesis, tdk, was up-regulated.  169 

Thymidine kinase has roles in nucleotide transport and metabolism by transferring the terminal 170 

phosphate from ATP to thymidine or deoxyuridine [61].  A decrease in the synthesis of purines 171 

coupled with an increase in phosphorylation of pyrimidines could result in a dramatic 172 

reorganization of the intracellular nucleotide pool. 173 

Specific protein metabolism genes regulated by SK-03-92 treatment included  174 

SACOL0590 (rplL7), SACOL0877 (gcvH), SACOL1907 (rluD), and SACOL2596 encoding a 175 

hypothetical protein with homology to YME1 metallo-dependent amidohydrolase mitochondrial 176 

inner membrane protein turnover [62].  GcvH shuttles the methylamine group of glycine from 177 

the P–protein to the T protein via a lipoyl group [63].  Daptomycin treatment of S. aureus cells 178 
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leads to dysregulation of the gcvT gene, the other half of the glycine cleavage enzyme system 179 

(34).   Both RplL7 and RluD are tied to translation (64). 180 

Genes associated with protein degradation and repair had altered transcript abundance in 181 

SK-03-92-treated S. aureus.  Transcripts encoding a putative repair system for deglycation of 182 

Amadori protein adducts derived from ribose-5-P [65] showed altered abundance in SK-03-92-183 

treated S. aureus, as did the transcript encoding the enzyme that produces ribose-5-P.  In S. 184 

aureus, this repair system is comprised of a low molecular weight phosphatase (PtpA) together 185 

with a fructosamine 3-kinase homolog, ribulosamine-3-kinase (SACOL2605).  The formation of 186 

Amadori protein adducts occurs spontaneously via a dehydrogenation mechanism when ribose-5-187 

P interacts with an amine, such as the lysine residues of proteins.  Amadori glycated proteins 188 

undergo further spontaneous reactions to become advanced glycation end products (AGEs).  189 

AGEs promote protein aggregation [65, 66].   190 

PtpA is an exported S. aureus signaling molecule controlled by tyrosine phosphorylation 191 

which may interfere with host cell signaling by removing the 5’ terminal phosphate from these 192 

potentially damaging adducts, thereby producing a substrate for the kinase to attach a phosphate 193 

to the 3’ carbon of the sugar [67].  Phosphorylation of the 3’ carbon of the sugar destabilizes the 194 

ribulosamine adduct and spontaneous hydrolysis frees the original amine, restoring the original 195 

functional protein.  Since, the LMW-PTP transcript ptpA was increased 2.3-fold and the kinase 196 

transcript SACOL2605 was decreased 9.6-fold, ribulosamine substrates produced were likely not 197 

being deglycated, and protein repair was not occurring.  Phase-dark and phase-bright inclusions 198 

were observed microscopically in SK-03-92-treated B. subtilis, consistent with perturbation of 199 

proteostasis resulting in visible accumulation of protein aggregates (R. Polanowski and M. Rott, 200 

unpublished results).  Uncontrolled protein aggregation is toxic to cells [66].   201 
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Transcript levels for genes involved in energy production were also affected in            202 

SK-03-92-treated S. aureus (Table 2), one of which has been directly linked to persistence in E. 203 

coli.   Besides the glpD gene, the adhE (SACOL0135), adhP (SACOL0660), and sdhC 204 

(SACOL1158) genes were also dysregulated by SK-03-92 treatment.  In Candida albicans, 205 

ADH1 catalyzes the NAD+ linked oxidation of MG to pyruvate and disruption of the adh1 gene 206 

in C. albicans caused accumulation of MG followed by inhibition of growth [68].  The 207 

dysregulation of glpD and adh genes suggests that MG was accumulating and glycation was 208 

occurring in SK-03-92-treated S. aureus.  MG glycation of proteins, lipids, and DNA generate 209 

AGEs [69]. 210 

Several genes with unknown function dysregulated by SK-03-92   211 

The genes identified above have annotation suggesting a known function for the gene 212 

product.  However, five genes identified by the microarray are annotated as hypothetical proteins 213 

with no known function.  These included three genes that were down-regulated (SACOL2315, 214 

SACOL2338, and SACOL2491) and two genes that were up-regulated (SACOL0742 and 215 

SACOL1789).  One other down-regulated gene, SACOL0089 has annotation as a myosin-reactive 216 

antigen, but the function in S. aureus is unknown. 217 

Few virulence factor genes dysregulated by SK-03-92  218 

The only true virulence factor genes affected by SK-03-92 treatment were the 219 

SACOL0151 cap5P gene that is involved in capsule biosynthesis [70], the SACOL1872 epiE 220 

gene encoding a gallidermin-class lantibiotic [71], the SACOL2333 gene encoding a YnfA 221 

family protein putative transport small multidrug resistance family -3 protein [72], and the srtA 222 

gene encoding sortase A that will be described in more detail below [73]. 223 

 224 
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Few regulatory genes dysregulated by SK-03-92 treatment 225 

A surprising microarray result was no known S. aureus global regulatory genes were 226 

shown to be affected by the drug treatment.  Microarray analysis of daptomycin treated S. aureus 227 

demonstrated that the the icaR gene was dysregulated compared to untreated cells [34].  Our 228 

microarray showed that a tetR-family transcriptional regulator, SACOL2340, and two genes 229 

comprising a putative TCS (SACOL2360 and SACOL2361) were dysregulated. 230 

Genes of a putative TCS are significantly down-regulated by SK-03-92 treatment 231 

The most striking results from the SK-03-92 microarray were the down-regulation of the 232 

two genes that comprise a putative TCS in S. aureus annotated as SACOL2360 (MW2284, 14.1-233 

fold down-regulated) and SACOL2361 (MW2285, 26.3-fold down-regulated).  A bioinformatic 234 

analysis of MW2284 and MW2285 suggest that they comprise a putative two-component 235 

regulatory system where MW2284 (LytTR superfamily regulator protein) is the response 236 

regulator protein and MW2285 (membrane protein) is the sensor kinase protein.  MW2284 was 237 

identified as a 440-bp ORF encoding a putative 14.7-kDa transcriptional regulator protein and 238 

MW2285 was identified as a 455-bp ORF encoding a putative 15.1-kDa histidine kinase sensor 239 

protein.  The MW2285 ORF has a 3-bp overlap with the MW2284 ORF.  BLASTP, PSI-BLAST, 240 

and BLASTN bioinformatics analyses [74] showed that MW2284 aligned with other two-241 

component regulatory system regulator proteins and MW2285 aligned with other two-component 242 

regulatory system sensor proteins.  Both proteins have homology with LytTR superfamily 243 

proteins involved in the regulation of bacterial genes [75].  These LytTR proteins regulate 244 

virulence gene expression in a variety of bacterial species including S. aureus.  The AgrA 245 

transcriptional regulator is one of these LytTR-type proteins [76].  Moreover, the MW2284 and 246 

MW2285 ORFs appeared to be conserved across a wide number of Gram-positive species, 247 
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including all Staphylococcus and Streptococcus species, as well as Bacillus, Clostridium, 248 

Lactobacillus, and Leuconostoc.  249 

The same LytTR TCS dysregulated in SK-03-92-treated S. aureus was up-regulated in 250 

purine synthesis deficient mutants in S. aureus [77].  The putative sensor kinase (MW2285) was 251 

up-regulated in purH mutants and the response regulator (MW2284) was up-regulated in purA 252 

mutants (adenylosuccinate synthetase involved in purine biosynthesis).  The response regulator 253 

component transcript was also up-regulated during anaerobic growth in another study [78].  A 254 

transposon mutant of the sensor kinase component has been previously shown to be viable, 255 

capable of producing a better biofilm, and had a lower LD50 than the parent strain [79, 80].  The 256 

mechanistic link between defects in purine synthesis, persister formation, and the LytTR 257 

regulatory system remains unclear.  Furthermore, RNAseq analysis of resveratrol treated S. 258 

aureus cells showed an almost 8-fold down-regulation of the MW2284 gene, but no effect on the 259 

MW2285 gene [37].   260 

Validation of microarray data by qRT-PCR 261 

 The microarray results were confirmed using qRT-PCR analyses on RNAs from 8X the 262 

MIC SK-03-92 treated MW2 cells versus untreated MW2 cells.  Transcription of the srtA gene 263 

was significantly up-regulated almost 6-fold (P < 0.006, Table 4) and the tdk gene was also up-264 

regulated 2.1-fold (P < 0.03) in SK-03-92 treated cells versus untreated cells.   On the other 265 

hand, several genes involved in purine biosynthesis (purD, purH, and purL) were shown to be 266 

significantly down-regulated 2.2- to 2.4-fold (P < 0.01 to 0.04), whereas the MW2284 and 267 

MW2285 genes were down-regulated 4- (P < 0.01) and 3-fold (P < 0.003), respectively in the 268 

SK-03-92 treated samples.  These results confirmed that treatment with the SK-03-92 lead 269 



www.manaraa.com

303 

 

compound caused dysregulation of the srtA, tdk, purD, purH, purL, MW2284, and MW2285 270 

genes. 271 

A sortase A mutant has a lower MIC against SK-03-92 than wild-type 272 

Since the putative MW2284/MW2285 TCS appears to repress transcription of the srtA 273 

gene, this regulatory effect could be tied to the mechanism of action of the SK-03-92 drug.   274 

Sortase A was first described in S. aureus in 1999 [73].  The protein covalently anchors surface 275 

proteins (e.g., fibronectin-binding protein, fibrinogen-binding protein, protein A, clumping 276 

factors, collagen adhesion protein) to the cell wall of S. aureus and other Gram-positive bacteria 277 

[81].   An LPXTG motif [82-84] is common among these anchored proteins and many are 278 

important for biofilm formation [85].  A mutation of the srtA gene caused less expression of 279 

several cell wall anchored surface proteins [86, 87].  Moreover, srtA mutants are attenuated 280 

compared to the wild-type strain in a variety of murine models of infection [86, 88, 89].  281 

Because srtA and MW2284/MW2285 transcription were affected by SK-03-92 treatment, 282 

MICs were performed using the SK-03-92 lead compound on an srtA mutant (NE1787), srtB 283 

mutant (control, NE1363), MW2284 mutant (NE671), and MW2285 mutant (NE272) compared 284 

to the wild-type strain JE2 [90].  The srtB, MW2284, and MW2285 mutants had MICs that were 285 

equal to the wild-type strain (Table 5).  However, the srtA mutant had an MIC that was 2-fold 286 

lower than the wild-type strain.  When a Listeria monocytogenes srtA mutant was tested [91], the 287 

MIC for the srtA strain was 8-fold lower than the wild-type strain.  A L. monocytogenes srtB 288 

mutant had the same MIC as the wild-type bacteria.   289 

Presumably, SK-03-93 treatment causes down-regulation of the MW2285 gene with an 290 

effect that would be similar to a mutation in the MW2285 gene.  The regulatory effect could be 291 

derepression of srtA transcription.   Either event would create more SrtA protein that in turn 292 
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would allow greater extracellular presentation of proteins on the surface of S. aureus cells.  This 293 

result may suggest that something tethered to the cell walls by sortase A that is conserved in both 294 

species may be tied to the mechanism of action of the SK-03-92 drug, and we are exploring this 295 

possibility. 296 

Mutations in the MW2284/MW2285 two-component regulatory genes cause an up-regulation of 297 

the srtA gene 298 

Since the microarray results showed up-regulation of the srtA gene and down-regulation 299 

of the MW2284 and MW2285 genes, we hypothesized that the MW2284 gene product, a putative 300 

transcriptional regulator protein, may be repressing the srtA gene.  To confirm that the putative 301 

two-component regulatory system (MW2284/MW2285) may be involved in repressing the srtA 302 

gene, we obtained transposon mutant strains from the Nebraska Transposon Mutant Library [89] 303 

with insertion mutations in the MW2284 and MW2285 genes. A qRT-PCR analysis was then 304 

undertaken on RNA isolated from the NE272 (MW2285 mutation) and NE671 (MW2284 305 

mutation) compared to the wild-type strain JE2, targeting the srtA gene.  The results showed that 306 

mutations in both the MW2284 and MW2285 genes led to a 9.2-fold (P < 0.005) and 8.1-fold (P 307 

< 0.0008) up-regulation of srtA transcription, respectively, suggesting that this putative two-308 

component regulatory system may be repressing transcription of the srtA gene (Figure 2).  309 

 310 

  311 
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3.  EXPERIMENTAL SECTION 312 

3.1.  SK-03-92 Synthesis 313 

 SK-03-92 was synthesized as described previously [22]. 314 

3.2.  Bacterial strains and growth conditions 315 

The S. aureus MW2 strain [7] used for the initial microarray and confirmatory qRT-PCRs 316 

(Table 1) was obtained from Jean Lee (Brigham and Young Hospital, Boston, MA).  S. aureus 317 

strains JE2 (wild-type), NE671 (MW2284), and NE272 (MW2285) were obtained from the 318 

Network on Antimicrobial Resistance in Staphylococcus aureus (NARSA) strain repository 319 

(Table 1), representing part of the Nebraska Transposon Mutant Library [90].  Strain JE2 is a 320 

plasmid-cured derivative of a USA300 CA-MRSA [92]. Phillip Klebba (Kansas State University, 321 

Manhattan, KS)[91] provided the Listeria montocytogenes wild-type strain EGD as well as the 322 

isogenic srtA and srtB mutant strains.  All strains were grown in brain heart infusion broth 323 

(Becton Dickinson, Franklin Lakes, NJ, USA) or trypticase soy broth (Becton Dickinson) shaken 324 

250 rpm at 37oC.  The transposon mutant strains had 5 g/mL of erythromycin (Sigma-Aldritch, 325 

St. Louis, MO, USA) added to the media. 326 

3.3.  RNA Extractions 327 

Total RNA was isolated from S. aureus MW2 cells grown to mid-logarithmic phase 328 

either treated with 8X the MIC of SK-03-92 or from dimethyl sulfoxide (DMSO) alone treated 329 

cells using TRizol extraction (Life Technologies, Carlsbad, CA, USA) according to 330 

manufacturer’s instructions with an additional lysostaphin treatment step to lyse the S. aureus 331 

cell walls.  The RNA samples were digested with DNase I (New England Biolabs, Ipswich, MA, 332 

USA) followed by phenol and chloroform extractions to remove the protein.   RNAs were run on 333 

0.8% agarose gels to confirm concentration and integrities of the RNAs.  To assess DNA 334 
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contamination of the samples, PCRs were performed on the RNA samples using SaFtsZ1 and 335 

SaFtsZ2 primers (see Table 2).  The PCR conditions for amplification with the SaFtsZ1/SaFtsZ2 336 

primers was as follows:  940 C, 1 min; 550 C, 1 min; and 720 C, 1 min for 35 cycles. 337 

3.4.  Microarray 338 

Total RNAs from cells treated with DMSO or 8X the MIC of SK-03-92 were converted 339 

to cDNAs, biotinylated, and hybridized to S. aureus GeneChips following the manufacturer's 340 

recommendations (Affymetrix, Santa Clara, CA, USA).  Agilent GeneSpring GX 7.3 software 341 

was used to gauge transcript differences and a two-fold or higher difference in the transcript 342 

level for one population over the other was considered significant.   Nucleic acid sequences with 343 

a ≥2-fold change in transcriptional abundance were mapped to the Staphylococcus aureus COL 344 

genome (taxid:93062) via BLASTN, BLASTX, or PSI-BLAST analysis [74] through the 345 

National Center for Biotechnology Information (NCBI) website, and their products and functions 346 

investigated.   347 

3.5.  cDNA Synthesis 348 

The cDNAs were synthesized from 5 g of total RNA from SK-03-92 treated or 349 

untreated S. aureus MW2 using a First-Strand Synthesis kit (Life Technologies) according to 350 

manufacturer’s instructions.   351 

3.6.  Real time-quantitative polymerase chain reaction (qRT-PCR) 352 

All of the qRT-PCRs were performed using the LightCycler FastStart DNA MasterPLUS 353 

SYBR Green kit according to manufacturer’s instructions (Roche, Indianapolis, IN, USA).  354 

Primers used in this study were based off of the MW2 sequenced genome [93] and synthesized 355 

by Integrated DNA Technologies (Coralville, IA, USA) that are shown in Table 2.  A 356 

LightCycler 1.5 machine (Roche) and a CFX96 machine (BioRad, Hercules, CA, USA) were 357 
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used throughout the study.  The guaB and ftsZ housekeeping genes were used as standardization 358 

controls.  Each RT-qPCR run followed the minimum information for publication of quantitative 359 

real-time PCR experiments guidelines [94].  The qRT-PCRs were done at least three times under 360 

the following conditions: 940 C, 20 sec; 550 C, 30 sec; and 720 C, 1 min for 35 cycles.   The level 361 

of target gene transcripts in MW2 cells was compared to the guaB and ftsZ genes. Crossover 362 

points for all genes were standardized to the crossover points for ftsZ and guaB in each sample 363 

using the 2-CT formula [95].    364 

3.7.  MICs 365 

 In vitro minimum inhibitory concentration (MIC) determinations were performed on the 366 

S aureus strains using SK-03-92 according to the Clinical and Laboratory Standards Institute 367 

guidelines [96].  All MICs were done a minimum of three times. 368 

3.8.  Statistical analysis 369 

 A Student’s t-test was used to assess probabilities.  P-values < 0.05 were considered 370 

significant. 371 

372 
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4.  CONCLUSIONS 373 
 374 

Drug treatment with the stilbenoid compound SK-03-92 caused more genes to be 375 

transcriptionally down-regulated than up-regulated compared to other bactericidal and stilbenoid 376 

compounds (e.g., pterostilbene and resveratrol).  The methoxy substitution on the main benzene 377 

ring at position 5 is likely to be responsible for this effect.  A putative TCS, MW2284/MW2285, 378 

is clearly affected by SK-03-92 treatment.  Is the TCS the prime target of the SK-03-92 lead 379 

compound and could targeting this TCS be the mechanism of action for SK-03-92 in Gram-380 

positive bacteria?  It is certainly possible that one of the SK-03-92 targets is this putative TCS.  381 

Knockouts of both MW2284 and MW2285 showed substantial up-regulation of the srtA gene that 382 

encodes sortase A.    Sortase A may present something on the exterior of the S. aureus cell that 383 

causes rapid cell lysis.  Furthermore, the MW2284 and MW2285 ORFs lie just upstream of the 384 

MW2286 ORF, which is thought to encode a quinolone biosynthetic gene important for the 385 

electron transport chain.  If the MW2284/MW2285 TCS positively regulates this gene, then a 386 

mutation in either gene or treatment of S. aureus with SK-03-92 drug would in turn cause down-387 

regulation of this gene and a disruption of the electron transport chain in S. aureus.   Evidence 388 

presented in this study also suggests the existence of a conserved bacterial pathway, involving 389 

PCD and persister formation, which is triggered by protein glycation and aggregation that may 390 

be responsible for the killing mechanism of SK-03-92.  Could this putative TCS be tied to these 391 

phenomenon?  Further study may help us determine if the SK-03-92-induced S. aureus cell lysis 392 

is caused by a disruption of the electron transport chain, an induction of proteostasis, regulation 393 

of a conserved prokaryotic PCD pathway, or a combination of two or more of these events.  394 
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Table 1. Bacterial strains used in this study 688 

_______________________________________________________________________ 689 

Bacterial strain    Genotype    Reference 690 

 691 

S. aureus 692 

MW2     USA400 wild-type   [7] 693 

JE2     USA300 wild-type   [90] 694 

NE272     JE2 MW2284 mutant  [90] 695 

NE671     JE2 MW2285 mutant  [90] 696 

NE1363    JE2 srtB mutant   [90] 697 

NE1787    JE2 srtA mutant   [90] 698 

L. monocytogenes 699 

 EGD     Wild-type    [97]  700 

 EGD srtA    EGD srtA mutant   [91] 701 

 EGD srtB    EGD srtB mutant   [91] 702 

_______________________________________________________________________ 703 

  704 
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Table 2.  Microarray analysis of genes dysregulated in S. aureus MW2 cells treated with 8X  705 
 706 

   the SK-03-92 MIC versus untreated cells  707 
_____________________________________________________________________________ 708 

Locus  Fold-difference Description 709 

 710 

Stress Response 711 

SACOL1759   -2.3   universal stress protein family  712 

Transporter 713 

SACOL0086   -2.0   drug transporter, putative  714 

SACOL0155   -5.7   cation efflux family protein 715 

SACOL0178   -2.9   PTS system, IIBC components (scrBC) 716 

SACOL0400   -2.6   ascorbate-specific PTS system subunit IIC (ulaA) 717 

SACOL0454   -2.3   sodium:dicarboxylate symporter family protein 718 

SACOL1018   -2.3   sodium:alanine symporter family protein 719 

SACOL1872   -3.0   epidermin immunity protein F (epiE) 720 

SACOL2146   -2.7   PTS system, mannitol-specific IIBC components (mtlA) 721 

SACOL2333   -2.8   YnfA family protein 722 

SACOL2573   -3.2   copper ion binding protein (copZ) 723 

SACOL2664   -2.3   mannose-6-phosphate isomerase (manA) 724 

SACOL2718   -4.6   2-oxoglutarate/malate translocator, sodium sulfate  725 

     symporter 726 

Signaling/Regulation 727 

SACOL2360 -14.1   LytTR family regulator protein  728 

SACOL2361 -26.9   histidine kinase sensor membrane protein 729 
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SACOL2340    2.2   transcriptional regulator TetR-family 730 

Cell Wall Associated 731 

SACOL0151   -2.7   UDP-N-acetylglucosamine 2-epimerase Cap5P (cap5P) 732 

SACOL0247   -3.2   holin-like protein LrgA (lrgA) 733 

SACOL0612   -2.1   glycosyl transferase, group 1 family protein 734 

SACOL1071   -2.2   chitinase-related protein (iraE) 735 

SACOL2554   -2.0   holin-like protein CidB (cidB) 736 

SACOL2539    4.2   sortase A (srtA) 737 

Anabolism/Nucleic Acids 738 

SACOL0130   -2.1   5’ nucleotidase family protein 739 

SACOL1078   -3.2   phosphoribosylformylglycinamidine synthase II (purL) 740 

SACOL1082   -2.5   bifunctional purine biosynthesis protein (purH) 741 

SACOL1083   -2.6   phosphoribosylamine-glycine ligase (purD) 742 

SACOL2329   -3.5   ribose 5-phosphate isomerase (rpiA) 743 

SACOL2111    2.2   thymidine kinase (tdk) 744 

SACOL2377    2.3   conserved hypothetical protein 745 

Anabolism/Proteostasis 746 

SACOL0085   -2.5   peptidase, M20.M25/M40 family 747 

SACOL2605   -9.6   ribulosamine 3-kinase 748 

SACOL0457    2.6   conserved hypothetical protein, heat induced stress 749 

SACOL0590    2.4   30S ribosomal protein L7 Ae 750 

SACOL0877    2.5   glycine cleavage system H protein (gcvH) 751 

SACOL1907    2.4   ribosomal large subunit pseudouridine synthase (rluD) 752 
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SACOL1939    2.3   phosphotyrosine protein phosphatase (ptpA) 753 

SACOL2596    2.6   metallo-dependent amidohydrolase 754 

Lipid  Metabolism 755 

SACOL2091   -2.5   beta-hydroxyacyl-dehydratase FabZ (fabZ) 756 

SACOL2459   -3.8   para-nitrobenzyl esterase (pnbA) 757 

SACOL1142  10.0   aerobic glyerol-3-phosphate dehydrogenase (glpD) 758 

Catabolism 759 

SACOL0135   -2.4   alcohol dehydrogenase, iron-containing (adhE) 760 

SACOL0660   -3.4   alcohol dehydrogenase, zinc-containing (adhA) 761 

SACOL1158   -2.5   succinate dehydrogenase, cytochrome b558 subunit (sdhC) 762 

SACOL1604   -2.1   glucokinase (glk) 763 

SACOL2338   -3.5   hypothetical protein (putative oxidoreductase) 764 

SACOL1713    2.3   hypothetical protein, putative ammonia monooxygenase 765 

Unknown 766 

SACOL0089   -4.4   myosin-reactive antigen, 67 kDa 767 

SACOL2315   -3.8   conserved hypothetical protein 768 

SACOL2338   -3.4   conserved hypothetical protein 769 

SACOL2491   -2.9   conserved hypothetical protein 770 

SACOL0742    3.1   conserved hypothetical protein 771 

SACOL1789    2.4   conserved hypothetical protein  772 
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Table 3.  Oligonucleotide primers used in this study 773 
 774 

 775 
Primer  Gene  Sequence 776 
 777 

 778 
SaFtsZ1 ftsZ  5’- GGTGTAGGTGGTGGCGGTAA – 3’ 779 
 780 
SaFtsZ2   5’- TCATTGGCGTAGATTTGTC – 3’ 781 
 782 
GuaBF1 guaB  5’- GCTCGTCAAGGTGGTTTAGGTG -3’ 783 
 784 
GuaBR1   5’- TAAGACATGCACACCTGCTTCG -3’ 785 
 786 
SrtA1  srtA  5’- TCGCTGGTGTGGTACTTATC – 3’ 787 
 788 
SrtA2    5’- CAGGTGTTGCTGGTCCTGGA – 3’ 789 
 790 
MW2284A MW2284 5’- CAATGCAAATGAGACGGAATCT -3’ 791 
 792 
MW2284B   5’- GAAGAATAGGTGTAGTGTGCAT -3’ 793 
 794 
MW2285A MW2285 5’- GTATGTTATTTGCAGACGGCAA -3’ 795 
 796 
MW2285B   5’- AAAGGCAAGAATCCGACATACG -3’ 797 
 798 
SA2043A tdk  5’-  CTTGTTCACTGACAGCCATCA -3’ 799 
 800 
SA2043B   5’- ACGCACGACTTAACTAATGTTG -3’ 801 
 802 
SaPurD1 purD  5’- CAGCCGCTAATTGATGGATTA -3’ 803 
 804 
SaPurD2   5’- AGCACTTCTGGCTGCTTCAAT -3’ 805 
 806 
SaPurH1 purH  5’- CCAGAAATAATGGATGGCCGT -3’ 807 
 808 
SaPurH2   5’- TGCCGGATGTACAATTGTTGT -3’ 809 
 810 
SaPurL1 purL  5’- GTTATGTGGAGTGAACATTGC -3’ 811 
 812 
SaPurL2   5’- AGCCCCAATAGAGACAATGTC -3’ 813 
 814 

 815 
  816 
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Table 4.   MIC results for S. aureus and L. monocytogenes mutants and wild-type strains  817 
    against SK-03-92 818 

 819 

 820 
Strain     Genotype   MIC 821 
 822 

 823 
S. aureus 824 
 825 

JE2   Wild-type   1a 826 
 827 
NE272   MW2285   1 828 
 829 
NE671   MW2284   1 830 
 831 
NE1363  srtB    1 832 
 833 
NE1787  srtA    0.5 834 

 835 
 836 
L. monocytogenes 837 
 838 
 EGD   Wild-type   1 839 
 840 
 EGD srtA  srtA    0.125 841 
 842 
 EGD srtB  srtB    1 843 
 844 

 845 
 aMean+standard deviation from three separate runs. 846 
  847 
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Figure 1.   Quantitative reverse transcribed-polymerase chain reaction results of S. aureus  848 

     MW2 cells treated with 8X the SK-03-92 MIC versus untreated cells 849 

 850 

 851 
 852 
 853 
 854 
 855 
 856 
 aMean+standard deviation from three separate runs. 857 
 858 
  859 
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Figure 2.  Quantitative reverse transcribed-polymerase chain reaction results of S. aureus  860 

    srtA transcription in wild-type bacteria compared to MW2284 and MW2285  861 

    mutants 862 

 863 
 864 
 865 

 866 
 867 
 868 
 869 
 870 
 871 
 872 
 873 
 aMean+standard deviation from three separate runs. 874 
 875 
  876 
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MIDAZOLAM TOLERANCE DATA 
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APPENDIX C 

SYNTHESIS AND BIOLOGY DATA FOR β-AND AZA-β-CARBOLINES  
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Compound 3 (a.k.a. MVL-VI-52)

N
N
H

N

O
O

C15H15N3O2 
Exact Mass: 269.1164 

Mol. Wt.: 269.2986 
C, 66.90; H, 5.61; N, 15.60; O, 11.88 

Subtype Binding Data at αxβ2γ 2 (nM) 

α1 α2 α3 α5 
2.9 2.5 3.4 3.7 

Efficacy Data
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Rodent Model Data
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Compound 3 binds to the α1,2,3,5β2γ2 GABAA/BzR receptor subtypes with high affinity.  
This data suggests that Compound 3 could effectively reduce alcohol self-administration 
as it binds to the appropriate receptors that are thought to be involved in alcohol seeking 
behaviors.  The efficacy data shows similar pharmacological profiles to that of diazepam, 
which is a well-known, active GABAA allosteric modulator.  Since the data for 
Compound 3 is similar to that of diazepam, Compound 3 would be expected to produce a 
pharmacological effect at the cellular level.  In rodent models, Compound 3 effectively 
reduced alcohol self-administration in a dose-dependent manner (dose range was 2.5 
mg/kg to 20 mg/kg).  In addition, a reduction in alcohol-seeking behavior was observed 
24 hours post-administration at the 10 mg/kg dose.  This observation shows promise that 
the drug (Compound 3) remains active over time. 
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Compound 4 (a.k.a. MVL-VI-34) 

N
N
H

N

O

HCl

C13H14ClN3O
Exact Mass: 263.08

Mol. Wt.: 263.72
C, 59.21; H, 5.35; Cl, 13.44; N, 15.93; O, 6.07  

Subtype Binding Data at αxβ2γ 2 (nM) 
α1 α2 α3 α5 

5.785 6.308 1.49 43.06 

Rodent Model Data 
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Compound 4 binds to the α1,2,3,5β2γ2 GABAA/BzR receptor subtypes with high affinity, 
similar to Compound 3.  This data suggests that Compound 4 could effectively reduce 
alcohol self-administration as it binds to the appropriate receptors that are thought to be 
involved in alcohol seeking behaviors. In rodent models, Compound 4 effectively 
reduced alcohol self-administration in a dose-dependent manner (dose range was 20 
mg/kg to 60 mg/kg).  The administered dose of Compound 4 was higher than that given 
for the same experiments using Compound 3.  This shows that Compound 4 is active in 
reducing alcohol self-administration but not as potent as Compound 3.  Compound 4 was 
also dose-dependent in remaining active 24 hours post-administration.  This observation 
shows promise that the drug (Compound 4) remains active over time. 
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ORIGINAL INVESTIGATION

Effects of the benzodiazepine GABAA α1-preferring ligand,
3-propoxy-β-carboline hydrochloride (3-PBC), on alcohol
seeking and self-administration in baboons
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Abstract
Rationale The various α subtypes of GABAA receptors
have been strongly implicated in alcohol reinforcement
and consumption.
Objectives The effects of the GABAA α1-preferring ligand,
3-propoxy-β-carboline hydrochloride (3-PBC), on seeking
and self-administration responses were evaluated in two
groups of baboons trained under a 3-component chained
schedule of reinforcement (CSR).
Methods Alcohol (4 %w/v; n05; alcohol group) or a pre-
ferred nonalcoholic beverage (n04; control group) was
available for self-administration only in component 3 of
the CSR. Responses in component 2 provided indices of
motivation to drink (seeking). 3-PBC (1.0–30.0 mg/kg) and
saline were administered before drinking sessions under
both acute and 5-day dosing conditions.
Results Repeated, and not acute, doses of 3-PBC significantly
decreased total self-administration responses (p<0.05), vol-
ume consumed (p<0.05), and gram per kilogram of alcohol
(p<0.05) in the alcohol group. In the control group, 5-day
administration of 3-PBC significantly decreased total self-

administration responses (p<0.05) but produced nonsignifi-
cant decreases in volume consumed. Within-session pattern of
drinking was characterized by a high level of drinking in the
first 20 min of the session for both groups, which was signif-
icantly (p<0.05) decreased by all doses of 3-PBC (1.0–
18.0 mg/kg) only in the alcohol group. In contrast, the first
drinking bout in the control group was only reduced at the
highest doses of 3-PBC (10.0 and 18.0 mg/kg).
Conclusions The results support the involvement of the
GABAA α1 subtype receptor in alcohol reinforcement and
consumption.

Keywords Alcohol . 3-Propoxy-β-carboline hydrochloride .

3-PBC . Self-administration . Baboon

Introduction

gamma-Aminobutyric acid (GABA) is the major inhibitory
neurotransmitter and a primary inhibitor of dopamine (DA)
neuronal activity in mesolimbic regions (Enoch 2008). The
actions of GABA in the central nervous system are mediated
by at least two receptors, GABAA and GABAB, which have
different distributions in the brain (Chu et al. 1990). The
GABA system has been implicated in the maintenance of
and relapse to chronic alcohol drinking (for recent reviews,
see Enoch 2008; Heilig et al. 2011; Lobo and Harris 2008).
Alcohol modulates the GABA receptor complex allosterically
to open the coupled chloride (CL−) channel and either hyper-
polarize cells or potentiate the hyperpolarization produced by
GABA (Blair et al. 1988; Koob 2004), subsequently modulat-
ing release of DA. GABAA receptors are important therapeutic
targets given their involvement in many of the direct behav-
ioral effects of alcohol including motor incoordination, seda-
tion, tolerance, and withdrawal in laboratory animals (for
reviews, see Davies 2003; Korpi 1994; Nevo and Haman
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1995) as well as alcohol reinforcement and consumption (for
reviews, see Chester and Cunningham 2002; Davies 2003).

GABAA receptors have a pentameric structure: five sub-
units, which form an ionophore. There are seven classes of
subunits of GABAA receptors and multiple isoforms (e.g.,
α1–6, β1–3, γ1–3, δ, ε, π, θ) (for a review, see D'Hulst et
al. 2009). Coexpression of the α, β, and γ subunits is required
for the formation of a GABAA receptor that has a benzodiaz-
epine (BZ)-binding site (Richter et al. 2012), and this basic
combination, with variations in subunit isoform, is most prev-
alent in the brain (Olsen and Sieghart 2008). In addition to
their primary uses as anxiolytics and sleep aides, BZs are the
standard treatment to alleviate alcohol withdrawal symptoms
(Amato et al. 2011) that are thought to be due, in part, to a
compensatory decrease in GABAergic inhibitory function that
occurs after discontinuation of the chronic activation of
GABA receptors by alcohol (Malcolm 2003). Activation of
GABA/BZ receptor complex seems to play an important role
in modulating alcohol reinforcing effects, as evidenced by
reduction in alcohol self-administration (under limited access
conditions) following acute pretreatment with GABA/BZ
antagonists and inverse agonists (Chester and Cunningham
2002; Koob 2004).

GABA/BZ receptors containing α1, α2, α3, or α5 subunits
appear to be especially relevant to inherited risks of alcohol. In
humans, genetic variations in GABAA α1 and α2 subunits
have been associated with alcohol dependence (Ittiwut et al.
2011; Johnson et al. 1992; Lydall et al. 2011) and with differ-
ences in the subjective effects of alcohol intoxication (Roh et al.
2011; Uhart et al. 2012), suggesting that these subunits may be
particularly important in alcohol abuse and dependence. Rat
strains specifically bred for high alcohol drinking (HAD) and
for alcohol preference (P) show elevations of GABAA recep-
tors in the nucleus accumbens (Murphy et al. 2002) and recent
studies in these inbred rat lines suggest that the GABAA α1
subunit is involved inmodulation of a variety of alcohol-related
behaviors including binge drinking (Yang et al. 2011), alcohol
reinforcement (Harvey et al. 2002; June et al. 2003), and
alcohol-induced loss of righting reflex (Boehm et al. 2006).

Isolation of the precise roles of the specific GABA re-
ceptor subtypes is currently being investigated using a series
of β-carboline ligands that bind preferentially to the α1
receptor subtype (Yin et al. 2010; Namjoshi et al. 2011).
One promising ligand, 3-propoxy-β-carboline hydrochlo-
ride (3-PBC), displays tenfold selectivity for the α1 subtype
over the α2 and α3 receptors as well as over 150-fold
selectivity for the α1 subtype over the α5 subtype (Harvey
et al. 2002). Further, it shows a higher binding affinity for
the α1 receptor (5.3 nM) than the prototypical α1-preferring
BZ agonist zolpidem (29.6 nM). In behavioral studies, 3-
PBC typically displays a GABAA-competitive antagonist
profile (Gourley et al. 2005; Lelas et al. 2002; Rowlett et
al. 2003), while an in vitro study has reported low partial

agonist efficacy at recombinant diazepam-sensitive recep-
tors (i.e., BZ receptors containing α1, α2, or α3 subunits;
Harvey et al. 2002), leading to a classification as a mixed
BZ partial agonist/antagonist (Yin et al. 2010). In P rats,
both systemic administration (parenteral, IP) and bilateral
microinfusion of 3-PBC in the anterior and medial ventral
palladium selectively produced marked reductions in
alcohol-maintained responding (Harvey et al. 2002).

GABA/BZ α1-preferring antagonists have been proposed
as potential pharmacotherapies for treatment of human alcohol
abuse disorders, based largely on data in rodents (Yin et al.
2010). While the studies in rodents are highly informative and
provide a basis for the current studies, it is important to
recognize that these studies were done in rodent lines selec-
tively bred for alcohol preference and/or high alcohol con-
sumption and genetics is only one factor in alcoholism risk.
Chronic alcohol exposure induces compensatory adaptations
in the GABA system, including decreases in α1 subunits in
rats (Grobin et al. 1998; Ortiz et al. 1995) and nonhuman
primate (Floyd et al 2004). Thus, it is important to examine the
effects of potential treatment medications in outbred subjects,
particularly in nonhuman primates which are closer in phylo-
genetic origin than rodents and will consume high levels of
alcohol daily and over prolonged periods. Self-administration
of alcohol over long periods (i.e., years) more closely models
the long-term use characteristics of alcohol abuse in humans.
The current study augments the data collected in rodents to
provide cross-species validation and bridge the translational
research gap between rodents and humans.

In the current studies, 3-PBC was administered before
sessions consisting of a chained schedule of reinforcement
(CSR) composed of distinct, sequential contingencies (“com-
ponents”), each of which is correlated with a different stimulus
(Kaminski et al. 2008;Weerts et al. 2006). The use of the chain
schedule allows examination of drug effects on responding in
the presence of alcohol-related stimuli that is maintained by
conditioned reinforcement (i.e., responding that produces ac-
cess to alcohol or “seeking”) as well as alcohol self-
administration (consumption) within the same session. This
study is the first to examine the effects of 3-PC on alcohol-
seeking behaviors. 3-PBC was administered under acute and
repeated administration (5 days). In order to determine the
specificity of effects on alcohol-related behaviors, repeated
treatment with 3-PBC was also administered to baboons that
self-administered a preferred, nonalcoholic beverage.

Methods and materials

Subjects

Nine singly-housed adult male baboons (Papio anubis;
Southwest Foundation for Biomedical Research, San
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Antonio, TX, USA) weighing 27.2 kg kg (+4.6 SD) served as
subjects. Baboons were housed under conditions previously
described (Kaminski et al. 2012). For the alcohol group (N05),
the reinforcer delivered was 4 % alcohol w/v. For the control
group (N04), the reinforcer delivered was a preferred non-
alcohol beverage (orange-flavored, sugar-free Tang®), diluted
to a concentration that functioned as a comparable reinforcer
(Duke et al. 2012). All baboons had extensive histories of self-
administration of the reinforcer under the CSR. Baboons re-
ceived standard primate chow (50–73 kcal/kg), fresh fruit or
vegetables, and a children's chewable multivitamin daily.
Drinking water was available ad libitum except during ses-
sions. Facilities were maintained in accordance with United
States Department of Agriculture (USDA) and Association for
Assessment and Accreditation of Laboratory Animal Care
International (AAALAC) standards. The protocol was ap-
proved by the Johns Hopkins University (JHU) Animal Care
and Use Committee and followed the Guide for the Care and
Use of Laboratory Animals (1996).

Apparatus

Each baboon's cage was modified to also function as the
experimental chamber (for details, see Weerts et al. 2006) and
contained (1) a panel with three colored “cue” lights; (2) an
intelligence panel with two vertically operated levers and two
different colored “jewel” lights; (3) a “drinkometer” connected
to a calibrated 1,000-ml bottle; and (4) a speaker, mounted
above the cage, which presented auditory tones. A computer
interfaced withMed Associates hardware and software remote-
ly controlled the experimental conditions and data collection.

Drugs

All solutions for oral consumption were mixed using reverse
osmosis (RO) purified drinking water. Ethyl alcohol (190
Proof, Pharmco-AAPER, Brookville CT, USA) was diluted
with RO water to 4 %w/v alcohol. Orange-flavored, sugar-
free, Tang® powder (Kraft Foods) was dissolved in RO water
as described previously (Kaminski et al. 2012). 3-PBC was
synthesized in the laboratory of Dr. James Cook (University of
Wisconsin-Milwaukee; Yin et al. 2010). Doses of 3-PBC (1.0–
30.0 mg/kg) were dissolved in a vehicle of 50 % propylene
glycol and 50 % saline and administered via the intramuscular
(IM) route (2–4 ml/injection). 3-PBC vehicle tests were com-
pleted using the same volume and procedures as detailed below.

CSR procedure

For all sessions, fluids were available only via the drinkom-
eter. The CSR procedures have been described in detail
previously (Kaminski et al. 2008; Kaminski et al. 2012)
and were identical for the alcohol and control groups.

Daily sessions (7 days/week for both groups) were initiated
at the same time (8:30 AM) and were signaled by a 3-s tone.
During component 1 (C1), a red cue light was illuminated
and all instrumental responses were recorded but had no
consequence. After 20 min, C1 was terminated and compo-
nent 2 (C2) was initiated, as signaled by illumination of the
yellow cue light. During the first link of C2 (C2-Link 1), the
yellow jewel light over the left lever was continuously
illuminated and a concurrent fixed interval 10 min, fixed
time 20 min (FI 10-min FT 20-min) schedule was in effect.
In C2-Link 2, the jewel light over the lever flashed and a
fixed ratio (FR 10) schedule was in effect on the left lever
for transition to component 3 (C3). If the FR 10 requirement
was not completed, the session terminated without transi-
tioning to C3 (i.e., no access to alcohol or the nonalcoholic
beverage for the day). C3 began with the illumination of the
blue cue light. A blue jewel light over the right lever was
also illuminated, and drinks of the alcohol or the nonalco-
holic beverage were available under an FR 10 schedule on
the right lever followed by contact with the drinkometer
spout. Fluid was delivered for the duration of spout
contact or for a programmed duration (5 s), whichever
came first. C3 (and the session) ended after 120 min.
Previously, we have demonstrated that Tang and alcohol
concentrations used in the current study maintained sim-
ilar breakpoints (i.e., functioned as equivalent reinforcers
(see Duke et al 2012)).

3-PBC test procedures

The CSR baseline (BL) criterion was defined as stable
self-administration of alcohol or nonalcoholic beverage
(i.e., ±20 %) for three consecutive CSR sessions. To
evaluate acute effects of 3-PBC on alcohol-related behav-
iors and to verify the safety of the dose range, in
experiment 1, doses of 3-PBC (1.0–30.0 mg/kg) or its
vehicle were administered acutely in the alcohol group
only. The CSR was established and CSR BL criterion
was met before each test dose of 3-PBC. Doses were
tested in mixed order, with active doses tested no more
than once per week. In addition, the results of experi-
ment 1 were used to determine a safe dose range for
repeated administration. In experiment 2, doses of 3-PBC
(1.0–18.0 mg/kg) or vehicle were administered daily for
five consecutive days to baboons in both groups. Only
four of the five baboons from the alcohol group partic-
ipated in experiment 2; one baboon had been removed
for health reasons unrelated to the study. For both experi-
ments, doses of 3-PBC were administered 10 min before
CSR sessions. For both experiments, stable BL intake
was sometimes disrupted after drug treatments and re-
quired additional time to stabilize before testing the next
dose (e.g., 2 weeks).
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Data analysis

The grand mean of the 3 days that preceded each test
condition for each baboon was used as the BL for compar-
ison with vehicle and doses of 3-PBC, except when other-
wise noted. In experiment 2, data analyzed were the last
three of the 5 days of 3-PBC administration. Data were
analyzed using separate statistical analysis of variance
(ANOVA) for each group (alcohol or control) with 3-PBC
dose (BL, 0–30.0 mg/kg) as a repeated measure.
Bonferroni's t tests were used for pairwise comparisons of
BL with vehicle and 3-PBC doses. Total gram per kilogram
of alcohol was calculated based on individual body weights
and total volume of alcohol consumed. Change in gram per
kilogram of alcohol consumed was calculated as test dose
(vehicle or 3-PBC)—BL and doses of 3-PBC were com-
pared to vehicle.

Temporal pattern of drinking was analyzed as number of
drinks in sequential 20-min bins using two-way repeated
measures ANOVA (Time × Dose) for each group given
5 days of 3-PBC dosing (experiment 2). Post hoc
Bonferroni pairwise comparisons examined differences be-
tween vehicle and doses of 3-PBC.

Results

Stable, reliable drinking was observed in all baboons in both
groups. During criterion BL sessions preceding test ses-
sions, baboons in both groups reliably completed the CSR.
The number of sessions required to satisfy the BL stability
criterion varied. Following drug treatment, BL intake was
sometimes unsystematically disrupted and required 2 weeks
or longer to meet the stability criterion. The volume of each
drink, within the constraints described above, was under the
control of the baboon. Average milliliter per drink (total
volume consumed/number of drinks in the session) was
approximately 30 ml/drink and did not vary systematically
as a function of 3-PBC administration (data not shown).
Few or no responses were recorded on the inactive operanda
(all operanda in C1, right lever and drinkometer in C2, left
lever in C3).

To determine if there were any differences in BL
responding in the alcohol and control groups, BL session
responding in experiment 2 was compared for the two
groups (BL sessions of the alcohol group in experiment 1
are not included because corresponding control group ses-
sions were not conducted). During BL sessions, systematic
differences between the groups were not observed for C1
and C2 measures. In C3, both alcohol and the nonalcoholic
beverage maintained self-administration responses (right le-
ver responses; drink contacts) and high intake (milliliter).
During the BL sessions preceding tests, the grand mean

(+SEM) alcohol intake was 625.6 (31.2) ml and 1.13
(0.09)g/kg, comparable to intake that has previously been
reported to produce blood alcohol levels (BAL) of > .08 %
in baboons (Kaminski et al. 2008). The grand mean nonal-
coholic beverage intake during BL sessions was 1,000.0
(0.0) ml. Despite having previously demonstrated compara-
ble reinforcement of 4 %w/v alcohol and the nonalcoholic
beverage under BL conditions via a progressive ratio pro-
cedure (Duke et al. 2012), volume of intake of the nonalco-
holic beverage was greater than volume of alcohol (t(4)0
24.6, p<.001) under BL conditions.

Experiment 1: effects of acutely administered 3-PBC
on seeking and self-administration under the CSR

Acute administration of 3-PBC did not result in significant
changes in any of the measures of seeking (C2-Link 1: FI
responses, latency to complete the FI requirement; C2-Link
2: FR responses rate (r/s)) or self-administration (C3: FR
responses, volume consumed, gram per kilogram con-
sumed) (Table 1). The data and unsystematic observation
by laboratory personnel confirmed that administration of
doses up to and including 30.0 mg/kg was safe and did
not produce severe adverse effects. The highest dose
(30.0 mg/kg) did, however, suppress daily food intake
(i.e., technicians reported that a large proportion of daily
free food ration was not consumed). As a result, this dose
was not tested under 5-day administration conditions (ex-
periment 2). Because 3-PBC did not systematically reduce
seeking and self-administration in the alcohol group, it was
not tested in the control group under acute administration
conditions.

Experiment 2: effects of repeated administration of 3-PBC
on seeking and self-administration under the CSR

In the alcohol group, significant changes in C2 seeking
measures (left lever responses) were not observed as a
function of repeated administration of 3-PBC (Table 2).
However, in the control group, the C2-L2 response rate
was significantly decreased as a function of dose, with both
10.0 and 18.0 mg/kg differing significantly from BL.
Although the number of C2-L1 FI responses was signifi-
cantly increased in the control group because this effect was
also observed during vehicle administration, it does not
appear to be directly related to 3-PBC effects but may be
related to the procedure for injections per se.

As shown in Fig. 1a, in the alcohol group, 3-PBC dose-
dependently decreased the number of right lever responses
(i.e., self-administration responses) in C3 (F(4,12)04.98, p
<0.05), with a significant decrease relative to BL at
18.0 mg/kg. Both volume of alcohol consumed and gram
per kilogram consumed decreased as a function of 3-PBC
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dose (Table 2). Similarly, change in gram per kilogram
alcohol consumed (compared to BL) was significantly de-
creased as a function of dose (F(4,12)03.53, p<0.05), with
18.0 mg/kg differing significantly from vehicle (Fig. 1b).

In the control group, 3-PBC produced a significant de-
crease in the number of right lever operant responses during
C3 (F(4,12)06.18, p<0.05) with a significant decrease rel-
ative to BL at 10 mg/kg (Fig. 1a). A nonsignificant decrease

Table 1 Experiment 1. Effects of acute 3-PBC (10-min pretreatment) on seeking (C2-L1 and C2-L2) and self-administration (C3) responses for
alcohol under the CSR. BL is the grand mean of the 3 baseline days preceding each acute administration

3-PBC dose

BL 0.3 1.0 3.0 10.0 30.0 F(5,15)

C2-L1 Left levFI resp Mean 92.4 130.6 66.6 38.6 256.2 205.8 0.57
SEM 47.5 80.2 47.5 18.0 206.9 155.0

Left lev FI resp Latency (s) Mean 647.7 621.3 648.6 613.5 639.9 670.1 0.85
SEM 17.9 11.3 21.7 3.4 20.9 41.9

C2-L2 Left lev FR Resp rate (r/s) Mean 2.2 3.2 2.7 1.0 2.3 3.2 1.88
SEM 0.3 0.8 0.9 0.4 0.5 0.6

C3 Right lev FR resp Mean 194.4 196.0 182.0 184.0 190.0 130.0 1.48
SEM 15.1 31.7 24.8 12.1 24.9 20.3

Volume (ml) Mean 554.2 677.0 484.0 480.0 631.1 436.0 1.91
SEM 61.0 147.2 57.1 60.4 83.2 79.4

g/kg Alc consumed Mean 1.03 1.27 0.88 0.88 1.10 0.75 1.65
SEM 0.1 0.3 0.1 0.1 0.2 0.1

Data shown are group means (and SEM) for baseline (BL) and each 3-PBC dose (mg/kg)

FI fixed interval, FR fixed ratio, Lev lever, Resp response, Alc alcohol

Table 2 Experiment 2. Effects of repeated administration (5-day) of
vehicle (V) and doses of 3-PBC (10-min pretreatment) on seeking (C2-
L1, C2-L2) for alcohol (alcohol group) and a nonalcohol beverage

(control group) under the CSR. All data are the mean of days 3–5 of
each condition. BL is the grand mean of the 3 baseline days preceding
each chronic condition

3-PBC dose

Alcohol group BL V 1.0 3.0 10.0 18.0 F(5,15)

C2-L1 Left lev FI resp Mean 144.7 169.4 106.9 115.5 36.8 116.3 0.48
SEM 84.8 102.8 60.1 84.0 23.7 50.3

Left lev FI resp Latency (s) Mean 630.2 606.2 695.8 712.3 697.8 739.0 1.60
SEM 13.7 2.1 53.4 35.0 32.3 57.6

C2-L2 Left lev FR Resp rate (r/s) Mean 3.1 3.2 2.7 2.2 2.1 2.1 1.40
SEM 0.3 0.5 0.5 0.3 0.7 0.7

C3 Volume (ml) Mean 625.6 674.8 576.7 489.6 355.4 283.3 4.86
SEM 31.2 85.1 115.0 110.6 76.5 71.2

gkg Alc consumed Mean 1.13 1.12 1.00 0.90 0.67 0.48 3.85
SEM 0.1 0.1 0.2 0.1 0.2 0.1

Control group

C2-L1 Left lev FI resp Mean 93.4 234.5 306.7 115.4 74.2 101.3 5.30
SEM 21.5 73.8 129.1 44.3 49.4 72.6

Left lev FI esp Latency (s) Mean 606.8 610.7 616.4 710.1 711.0 676.9 0.96
SEM 0.9 2.52 12.4 56.2 87.8 70.1

C2-L2 Left lev FR resp Rate (r/s) Mean 3.1 2.9 2.5 2.1 1.5 1.7 3.78
SEM 0.3 0.4 0.2 0.2 0.3 0.4

C3 Volume (ml) Mean 1000 1000 979.2 825.0 772.9 775.0 1.84
SEM 0.0 0.0 20.8 175.0 88.2 125.2

Data shown are group means (and SEM) for baseline (BL) and each 3-PBC dose (mg/kg). An underlined F ratio indicates a significant (p<0.05
ANOVA), numbers in bold indicate a significant (p<0.05) Bonferroni's post hoc test compared to vehicle

FI fixed interval, FR fixed ratio, Lev lever, Resp response, Alc alcohol
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in the volume consumed (Table 1) was also obtained in the
control group. Individual data showed that 3-PBC decreased
volume consumed for all four baboons at 10.0 and 18.0 mg/
kg, while lower doses (1.0 and 3.0 mg/kg) produced a
decrease in only one of the baboons.

During BL, in both the alcohol and control groups, the
majority of drinks occurred in the first 20 min of availability,
followed by a lower rate across the subsequent 20-min bins.
Despite this general similarity, a greater proportion of drinks
occurred during the first 20-min bin in the control group
(>95 %) compared to the alcohol group (>75 %) (Fig. 2). All
doses (1.0–18.0 mg/kg) of 3-PBC significantly (p<05) de-
creased the number of drinks during the first 20 min in the
alcohol group, with larger decreases observed at the higher
(10.0 and 18.0 mg/kg) doses. In the control group, only the
highest doses (10 and 18.0 mg/kg) significantly decreased
drinking during the first 20 min of drinking.

Discussion

Targets for therapeutic agents to treat alcohol abuse and
dependence include the reduction of alcohol intake and
attenuation of the motivation or desire to consume alcohol.
In the current model, this would be reflected in decreases in
alcohol self-administration responses and gram per kilogram
intake (consumption in C3), and disruption of responses
directed towards obtaining the opportunity to drink (seeking
in C2). Several important findings were identified in the
current study. First, repeated (5-day), but not acute, admin-
istration of the GABAA α1-preferring ligand 3-PBC re-
duced ongoing alcohol self-administration in baboons with
long-term alcohol self-administration experience. Second,

3-PBC did not disrupt the established pattern of alcohol
seeking and self-administration but reduced the magnitude
of intake, particularly during the initial drinking bout. Third,

Fig. 1 Experiment 2: the
effects of repeated (5-day)
administration of 3-PBC on
self-administration in C3 of the
CSR in a the alcohol group and
b the control group. Data
shown are the group means
(±SEM) of right (self-adminis-
tration) responses (left panels)
and for the alcohol group,
change in gram per kilogram of
alcohol consumed (right panel).
*p<0.05 for pairwise compari-
son for each dose vs. baseline

Fig. 2 Experiment 2: the effects of repeated (5-day) administration of
3-PBC on the pattern and number of drinks per 20-min interval of the
120-min self-administration period (C3) in the a alcohol group and b
the control group. Data shown are group mean drinks (±SEM) for each
successive time bin of availability of alcohol or the nonalcoholic
beverage, and *p<0.05 for pairwise comparison for each 3-PBC dose
vs. vehicle within each time bin
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3-PBC also suppressed responding maintained by a nonal-
coholic beverage, albeit at higher doses than required to
suppress alcohol. Each of these findings is discussed below.

The finding that 3-PBC decreased alcohol-maintained
responding and consumption in primates provides further
evidence of a role of α1 GABAA subtype in alcohol abuse
and dependence. The involvement of the GABAA receptor
in the behavioral actions of alcohol is complex, with differ-
ent subtypes differentially involved in the various effects of
alcohol. Studies with subtype-preferring compounds and in
modified mouse models have shown that several of the
subtypes (α1, α2, α3, and α5) may have involvement in
alcohol reinforcement (Atack 2003; Cook et al. 2005;
Stephens et al 2005; for a review see Kumar et al 2009).
3-PBC exhibits binding preference for the GABAA α1
receptor (Cox et al. 1998; Huang et al. 2000). The current
findings are consistent with studies in rats selectively bred
for P or HAD. Specifically, administration of the α1-
preferring ligands 3-PBC or β-carboline-3-carboxlate-t-
butylester (βCCt) decreased ongoing alcohol consumption
in P rats when administered systemically or via microinfu-
sion into the ventral palladium (Harvey et al 2002; June et
al. 2003). Taken together with the current findings, the α1
GABAA subtype-preferring ligand 3-PBC reduces alcohol-
maintained behaviors and daily alcohol intake in both ge-
netically predisposed animals and outbred animals with
long-term drinking experience.

In the present study, high doses of 3-PBC also produced a
decrease in self-administration of a palatable nonalcoholic
beverage, which suggests that 3-PBC effects may not be
specific to alcohol. Although 3-PBC typically displays a BZ
antagonist-like profile in most behavioral tasks, in an in
vitro analysis, 3-PBC exhibited a low partial agonist effica-
cy at recombinant diazepam-sensitive receptors (Harvey et
al 2002). The decreased component 2 FR (C2-L2) response
rate in the control group is consistent with a rate-suppressing
agonist effect. However, responding was not also sup-
pressed during the FI link of C2 in the control group (and,
in fact, was increased at lower doses), suggesting that a
general rate-decreasing effect cannot account for the non-
specific effects obtained.

Nonspecific effects have also been reported in other
studies. For example, α1 receptor knockout mice consumed
less ethanol in a two-bottle choice procedure, but also less
saccharin, when compared to wild type mice (Blednov et al.
2003; June et al. 2007). α1-GABAA receptor knockout mice
also showed decreased operant responding for both ethanol
and sucrose (June et al. 2007). However, Harvey et al.
(2002) reported that only the highest IP administered dose
(20 mg/kg) of 3-PBC significantly suppressed saccharin-
maintained responding and did so throughout the drinking
period. As 3-PBC does bind to other α-receptor subtypes to
some degree, the authors suggested there may be a

saturation of all α-receptor subtypes following the highest
dose. Similarly, in the present study, acute administration of
the highest dose of 3-PBC (30 mg/kg) in the alcohol group
disrupted daily food intake and repeated administration of
the highest doses (10 and 18 mg/kg) suppressed responding
for a highly preferred beverage during the initial 20 min of
the session in the control group. The highest dose tested
under the 5-day dosing conditions in the present study
(18 mg/kg) is roughly equivalent (via interspecies conver-
sion, Dews 1976; Mordenti and Chappell 1989) to 78 mg/kg
in the rat, a dose that is substantially higher than that
evaluated by Harvey et al. (2002). Thus, it is possible that
receptor saturation may account for the decrease in non-
alcohol beverage in the present study.

This is the first study to examine the effects of 3-PBC on
responses to gain access to alcohol (seeking). 3-PBC did not
significantly decrease seeking during either C2 link in the
alcohol group. Alcohol-related cues maintain seeking be-
havior even under conditions of alcohol abstinence and are
highly resistant to change. For example, studies in rats have
shown that stimuli previously paired with alcohol continue
to maintain responding for many sessions (e.g., Ciccocioppo
et al. 2001; Zironi et al. 2006). Likewise, in Kaminski et al.
(2008), presentation of alcohol-related cues in the CSR
maintained C2 responding for an extended period (i.e., 30
consecutive sessions) after water was substituted for alcohol
in C3 (i.e., during extinction). In addition, when alcohol was
available for consumption in C3, high levels of seeking
responses were maintained (>600 responses in C2 Link 2)
under conditions in which the response requirement was
progressively increased to obtain the daily supply of alcohol
(Kaminski et al. 2008). In the alcohol group, then, the
strength of C2 seeking responding, which is maintained by
transition to C3 where alcohol is available for consumption,
appears to have mitigated the C2 (seeking) response sup-
pression observed in the control group. This suggests that 3-
PBC suppression of alcohol-maintained responding
obtained in C3 is a function of changes in the reinforcing
effects of alcohol upon consumption.

Within each daily session, in both the alcohol and control
groups, the majority of BL drinking occurred within the first
20 min of the 2 h of availability. Drinks in the first 20 min
was tightly clustered (i.e., a single drinking bout). 3-PBC
did not disrupt this pattern of intake but dose-dependently
decreased the number of drinks in this initial drinking bout
in the alcohol group. Consistent with the results of Harvey et
al. (2002), after the initial suppression of intake, 3-PBC did
not reduce the low levels of alcohol drinking during later
portions of the session. As a result, the effects of 3-PBC on
self-administration measures for the entire 2-h drinking pe-
riod differed from BL only at the highest doses of 3-PBC.
The suppression of alcohol intake during the first drinking
bout of the CSR, with BL levels of alcohol intake later in the
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session, is similar to that previously reported for naltrexone
(Kaminski et al. 2012). Naltrexone is one of the current
Food and Drug Administration (FDA)-approved treatments
to reduce drinking and promote abstinence in alcohol-
dependent persons and numerous clinical trials have dem-
onstrated its effectiveness for treatment of alcohol depen-
dence (Johnson 2008). Studies have suggested that
naltrexone's clinical effectiveness is due, in part, to prevent-
ing drinking episodes from becoming a full-fledged relapse
to heavy drinking (Anton et al. 1999; O'Malley and
Froehlich 2003; Pettinati et al. 2006).

There are a number of strengths of the current study that
increase the translational value of these findings. First, recent
reviews have emphasized the importance of animal models
with sufficient alcohol intake to achieve a biologically relevant
BAL of 0.08 mg/dl or more for better medication development
(Egli 2005; Grant and Bennett 2003). In the alcohol group,
baboons drank approximately 1 g/kg/day of alcohol. Mean
BAL of 88.2 mg/dl (>0.08 %) were previously determined in
these same baboons after comparable alcohol intake (mean
volume 0.93 g/kg) (Kaminski et al. 2008). A BAL of 0.08 %
is defined as intoxication with regard to National Institute on
Alcohol Abuse and Alcoholism (NIAAA) definitions and for
driving violations in most of the USA. Second, the current
procedure models key elements of human problematic drink-
ing. In humans, drinking to intoxication (e.g., 0.8 to 1 g/kg,
BAL > 0.08 %) within a single drinking period (binge) and
regular drinking at this level across days (heavy drinking) is
characterized as problem drinking with higher risk for alcohol-
ism (Rethinking Drinking, NIH). The baboons in the current
study had long-term self-administration experience (i.e., years)
under the CSR with either alcohol or, for the control group, the
nonalcoholic beverage. Thus, based on NIAAA definitions,
baboon drinking in the current study models problem drinking
in humans. Third, our study is the first to show that a GABAA

α1-preferring ligand reduces alcohol self-administration
behaviors and gram per kilogram consumption in long-term
heavy drinking primates under a CSR. Use of the CSR is
novel, as it allows, within the same session, evaluation of drug
effects on responding in the presence of alcohol-related stimuli
maintained by conditioned reinforcement as well as alcohol
self-administration (consumption) and, thus, provides a mea-
sure of the motivation to drink. Fourth, the inclusion of the
control group allowed the examination of specificity of 3-PBC
effects on alcohol-related behaviors.

Previously, we have shown that alcohol-seeking behav-
iors maintained by alcohol-associated cues are highly resis-
tant to change and are sensitive to duration of abstinence
and alcohol availability (Kaminski et al. 2008; 2012; Weerts
et al 2006). In the present study, 3-PBC did not decrease C2
seeking measures but did produce time-dependent changes
in alcohol self-administration behaviors in C3. As indicated
previously, ideal therapeutic agents for alcohol abuse and

dependence would reduce alcohol seeking and self-
administration in the current model. Thus, the present results
suggest that, like naltrexone, GABAA α1-preferring ligands,
such as 3-PBC, may have clinical utility in reducing the
severity of drinking episodes when they do occur but are
less likely to affect the motivation or desire to consume
alcohol. With the recent development of ligands selective
for each of the α subtypes, future research can further clarify
the role of the GABA receptors in alcohol abuse and
dependence.
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Background:  The  major  inhibitory  neurotransmitter,  gamma-aminobutyric  acid  (GABA),  modulates  many
of  the  behavioral  effects  of  alcohol,  including  sedation,  tolerance,  and  withdrawal.  The  �1  subunit  of the
benzodiazepine  GABAA receptor  is the  most  widely  expressed  alpha  subunit  in  the  brain,  and  has  been
implicated  in  the  reinforcing-  and  abuse-related  effects  of  alcohol.  The  aim  of the  present  study  was
to  examine  whether  treatment  with  a benzodiazepine  GABAA �1-preferring  ligand,  3-isopropoxy-�-
carboline  hydrochloride  (3-ISOPBC),  selectively  decreases  alcohol  seeking  and  consumption.
Methods: Eight  baboons  self-administered  alcohol  (4%  w/v;  n  =  5; alcohol  group)  or  a  non-alcoholic
beverage  (n = 3; control  group)  in  Component  3  of  a chained  schedule  of  reinforcement.  Responses  in
Component  2 provided  indices  of  motivation  to drink  (seeking).  Doses  of 3-ISOPBC  (5.0–30.0  mg/kg) and
vehicle  were  administered  before  drinking  sessions  under  both  acute  and  chronic  (5  day)  conditions.
Results:  Chronic,  and  not  acute,  administration  of  3-ISOPBC  significantly  decreased  self-administration
responses,  g/kg  alcohol  consumed,  and  the  number  of  drinks  in and  duration  of  the  first  drinking  bout  in
the  alcohol  group.  In the  control  group,  chronic  administration  of  3-ISOPBC  did  not  significantly  decrease
any  of  these  measures  at any  of the  doses.
Conclusions: The  GABAA �1-preferring  ligand  3-ISOPBC  may  have  therapeutic  potential  in the  treatment
of  alcohol  use disorder  due  to its ability  to selectively  reduce  alcohol  use.

© 2016  Elsevier  Ireland  Ltd.  All  rights  reserved.

1. Introduction

Gamma-aminobutyric acid (GABA) is the major inhibitory neu-
rotransmitter in the central nervous system and is an important
target in the development of pharmacotherapies for alcohol use dis-
order. GABA binds to type A receptors, which have been implicated
in the acute and chronic effects of alcohol, including sedation, toler-
ance, and withdrawal as well as the motivational effects of alcohol,
including alcohol reinforcement and consumption (for reviews, see
Enoch, 2008; Kumar et al., 2009; Lobo and Harris, 2008). GABAA
receptors are composed of five subunits that form a central chlo-
ride channel and can belong to different subunit classes: �(1–6),
�(1–3), �(1–3), �, �, �, �, and 	(1–3). While many GABAA recep-

∗ Corresponding author. Johns Hopkins Bayview Campus, Behavioral Biology
Research  Center, 5510 Nathan Shock Drive, Suite 3000, Baltimore, MD,  21224, USA.

E-mail address: eweerts@jhmi.edu (E.M. Weerts).

tors are composed of one �, two �, and two � subunits, the various
subunit classes allow for extensive heterogeneity in receptor sub-
unit composition. The subunit composition is a major determinant
of the pharmacological profile of the receptor and the presence or
absence of certain subunits may  regulate specific behavioral effects
of drugs such as alcohol (Olsen and Sieghart, 2009).

The �1 subunit of the GABAA receptor may play a role in
the reinforcing- and abuse-related effects of alcohol. Knockout
mice without the GABAA �1 receptor have been shown to con-
sume less alcohol under a two-bottle alcohol versus water choice
procedure and to respond less for alcohol under an operant
self-administration procedure, although these were accompanied
by reductions in saccharin and sucrose consumption (Blednov
et al., 2003; June et al., 2007). In rodents bred for high alco-
hol intake, benzodiazepine GABAA �1-preferring antagonists,
3-propoxy-�-carboline hydrochloride (3-PBC) and �-carboline-
3-carboxylate-tert-butyl ester (�CCT), decreased alcohol intake
when administered systemically or through microinfusions into

http://dx.doi.org/10.1016/j.drugalcdep.2016.10.036
0376-8716/© 2016 Elsevier Ireland Ltd. All rights reserved.
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the ventral palladium (Harvey et al., 2002; June et al., 2003). In
primates, chronic administration of 3-PBC significantly decreased
self-administration responses, volume consumed, and g/kg alcohol
intake but also had some effects on self-administration of a non-
alcoholic reinforcer in one study (Kaminski et al., 2013). In another
study, chronic administration of 3-PBC and �CCT did not decrease
alcohol intake or blood alcohol levels (Sawyer et al., 2014).

It  is clear from the work of Licata et al. (2009) in primates,
June et al. (2003) and Harvey et al. (2002) in rodents, and Platt
et al. (2002) in rhesus macaques, that both �CCT and 3-PBC have
been shown to be �1-preferring antagonists in vivo. Moreover, both
�CCT and 3-PBC have been shown to be potent antagonists in vitro
(Harvey et al., 2002; Yin et al., 2010). Based on these and the above
data, the synthesis of an analog of 3-PBC, 3-isopropoxy-�-carboline
hydrochloride  (3-ISOPBC), was undertaken (Tiruveedhula et al.,
2015). This choice was guided by molecular modeling (He et al.,
2000; Huang et al., 2000) wherein it is well established that a major
change in the structure of a benzodiazepine GABAA (�1-6�2/3�2)
receptor subunit selective ligand can dramatically alter the subunit
selectivity (Clayton et al., 2007, 2015). 3-ISOPBC displays a 7-fold
selectivity for the �1 subunit over the �2 and �3 subunits as well as
a 30-fold selectivity over the �5 subunit (supplemental Table 1s).
3-PBC binding affinities have been published previously (Harvey
et al., 2002). 3-ISOPBC did not bind to any other receptors in the 43
receptor panel tested (supplemental Table 2s) in the psychoactive
drug screening program (UNC, B. Roth; Besnard et al., 2012; Huang
et al., 2010), analogous to the ligand 3-PBC. In addition, 3-ISOPBC
did not exhibit sedative nor ataxic activity, as illustrated by results
from rotarod testing (supplemental Fig. 1s). Even though 3-ISOPBC
binds more potently to �1 receptors (supplemental Table 1s), it is
clear from the rotarod data that it does not affect positive allosteric
modulation at benzodiazepine �1 GABAA receptors. The ligand 3-
PBC also had no agonist activity at �1 subunits, even though it
binds more potently to the �1 subunit than other DS sites (Yin
et al., 2010). The choice of 3-ISOPBC was also based on the structure
of the branched isopropyl group, which would hinder metabolism
by beta (omega-1) oxidation. Since 3-ISOPBC may  undergo phase
1 metabolism by cytochrome P450 enzymes—potentially by beta
(omega-1) oxidation of the linear n-propyl group in 3-PBC (Foye
et al., 2013) – at a much slower rate than 3-PBC, it was  hypothe-
sized that this would increase the duration of action and provide a
ligand more active in vivo than 3-PBC.

The present study investigated whether acute and chronic
administration of 3-ISOPBC could selectively reduce alcohol seek-
ing and self-administration in baboons. The baboons consumed
alcohol daily under a chained schedule of reinforcement at levels
that produce blood alcohol levels exceeding 0.08%. The use of the
chain schedule allows for examination of drug effects on respond-
ing in the presence of alcohol-related cues that is maintained by
conditioned reinforcement (i.e., responding that produces access to
alcohol or “seeking”), as well as alcohol self-administration within
the same session. To determine the specificity of effects on alcohol-
related behaviors, chronic administration of 3-ISOPBC was  also
conducted with baboons that self-administered a preferred, non-
alcoholic beverage under the chained schedule.

2. Material and methods

2.1.  Subjects

Eight singly-housed adult male baboons (Papio anubis; South-
west Foundation for Biomedical Research, San Antonio, TX)
weighing on average 28.1 kg (+ 4.2 SD) served as subjects. For the
alcohol group (N = 5), the reinforcer delivered was  4% w/v  alcohol.
For the control group (N = 3), the reinforcer delivered was  a pre-

ferred  non-alcohol beverage (orange-flavored, sugar-free Tang®),
diluted to a concentration that functioned as a comparable rein-
forcer (Duke et al., 2014). All baboons had extensive histories of
self-administration of either alcohol or the non-alcoholic beverage
under the chained schedule of reinforcement as reported previ-
ously (Duke et al., 2014; Holtyn et al., 2014; Kaminski and Weerts,
2014; Kaminski et al., 2008, 2012, 2013). Each day, the baboons
were fed standard primate chow that was  adjusted to maintain
sufficient caloric intake for normal baboons of their size, age, and
activity level (about 50–73 kcals/kg); fresh fruit or vegetables; and
a children’s chewable multivitamin. Water was available ad libitum
except during sessions. The housing room was  maintained under
a 12–hour light/dark cycle (lights on at 6:00 AM). Facilities were
maintained in accordance with USDA and AAALAC standards. The
protocol was  approved by the JHU Animal Care and Use  Committee
and followed the Guide for the Care and Use of Laboratory Animals
(2011).

2.2. Apparatus

Sessions were conducted in modified primate cages as described
in detail previously (Kaminski et al., 2008; Weerts et al., 2006) and
contained (1) a panel with three colored “cue” lights, (2) an intelli-
gence panel with two vertically operated levers and two different
colored “jewel” lights each located above one of the levers, (3) a
“drinkometer” connected to a calibrated 1000-ml bottle, and (4) a
speaker mounted above the cages for presentation of auditory stim-
uli (tones). A computer interfaced with Med  Associates hardware
and software remotely controlled the experimental conditions and
data collection.

2.3.  Chained schedule of reinforcement procedure

Sessions were conducted seven days per week and began at the
same time (8:30 AM)  each day. The start of a session and the onset
of Component 1 was signaled by a 3-s tone. During Component
1, a red cue light was illuminated and all instrumental responses
were recorded but had no programmed consequence. After 20 min,
Component 1 ended and Component 2 was  initiated.

Component 2 was  signaled by the illumination of a yellow cue
light and consisted of two  links. During the first link, the jewel light
over the left lever was turned on, and a concurrent fixed inter-
val 10 min, fixed time 20 min  (FI 10-min FT 20-min) schedule was
in effect. The first link ended either a) with the first response on
the left lever after 10 min  elapsed or b) automatically after 20 min,
whichever occurred first. During the second link, the jewel light
over the left lever flashed and a fixed-ratio (FR) 10 schedule was in
effect on the left lever. Completion of the FR response requirement
ended Component 2; the yellow cue light and the jewel light were
turned off and Component 3 was initiated. If the FR 10 requirement
was not completed within 90 min, the session terminated with-
out transitioning to Component 3 (i.e., no access to alcohol or the
non-alcoholic beverage for the day).

Component 3 was signaled by the illumination of the blue cue
light. A blue jewel light over the right lever was also illuminated,
and the opportunity to self-administer alcohol or the non-alcoholic
beverage (depending on group assignment) was  available under
an FR 10 schedule on the right lever. Completion of each FR and
subsequent contact with the drinkometer spout delivered fluid for
the duration of spout contact or for a programmed duration (5 s),
whichever came first. This defined a single drink. Component 3 and
the session ended after 120 min.
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Table  1
Experiment 1. Effects of acute administration of vehicle (V) and doses of 3-ISOPBC on seeking in Component 2 (C2) and consumption in Component 3 (C3) for alcohol under
the  chained schedule of reinforcement. Baseline (BL) is the grand mean of the 3 days preceding each acute administration.

3-ISOPBC dose (mg/kg)

BL V 10.0 20.0 30.0 F (4,16)

C2 Left Lever
FI  Resp

Mean 125.5 574.8 582.8 272.0 417.0 1.91
SEM  48.0 270.1 307.3 166.6 236.6

Left Lever FI Resp
Latency  (s)

Mean 632.3 625.4 615.1 629.9 613.6 0.46
SEM  24.8 19.2 13.7 13.2 10.7

C3 Right Lever
FR  Resp

Mean 117.9 126.2 108.0 109.4 106.0 0.82
SEM  14.6 12.6 13.0 16.1 19.5

g/kg Alc Consumed Mean 1.1 1.2 1.1 1.0 1.0 0.60
SEM  0.1 0.1 0.1 0.1 0.1

Note: FI, Fixed Interval; FR, Fixed Ratio; Resp, Response; Alc, Alcohol.

2.4. Drugs

All  solutions for oral consumption were mixed using reverse
osmosis (RO) purified drinking water. Ethyl alcohol (190 Proof,
Pharmco-AAPER, Brookville CT) was diluted with RO water to
4% w/v alcohol. Orange-flavored, sugar-free, Tang® powder (Kraft
Foods) was dissolved in RO water as described previously (Duke
et al., 2014). The 3-ISOPBC was synthesized in the laboratory of
Dr. James Cook (University of Wisconsin-Milwaukee; Tiruveedhula
et al., 2015). Doses of 3-ISOPBC (5.0–30.0 mg/kg) were dissolved in a
vehicle of 50% saline, 37.5% propylene glycol, and 12.5% ethanol and
administered via the intramuscular route (2–3 mls/injection). Vehi-
cle tests were completed using the same volume and procedures
as detailed below.

2.5.  3-ISOPBC test procedures

The  baseline stability criterion was defined as stable self-
administration of alcohol or non-alcoholic beverage (i.e., ± 20%) for
three consecutive sessions. To evaluate acute effects of 3-ISOPBC
on alcohol-related behaviors and to verify the safety of the dose
range, in Experiment 1, doses of 3-ISOPBC (10.0–30.0 mg/kg) or
its vehicle were administered acutely in the alcohol group only.
The baseline stability criterion was met  before each test dose of 3-
ISOPBC. Doses were tested in mixed order, with active doses tested
no more than once per week. In Experiment 2, doses of 3-ISOPBC
(5.0–20.0 mg/kg) or vehicle were administered daily for 5 consec-
utive days to baboons in both groups. For both experiments, doses
of 3-ISOPBC were administered 30 min  before sessions.

2.6.  Data analysis

The  primary variables of interest included measures of seek-
ing (Component 2: FI responses and latency to complete the FI
requirement) and measures of consumption (Component 3: FR self-
administration responses, drink contacts, and volume consumed).
Total g/kg and ml/kg consumed were calculated based on individ-
ual body weights and the total volume of alcohol or non-alcoholic
beverage consumed, respectively. The patterning of drinking was
analyzed as a function of drinking “bouts” as in our previous study
(Kaminski and Weerts, 2014). A drinking bout was defined as 2 or
more drinks with less than 5 min  between each drink, beginning
with the first drink.

For  each baboon, the mean of the 3 sessions that preceded
each test condition was  used as the baseline for comparison with
doses of 3-ISOPBC and vehicle. To determine whether there were
any differences in baseline responding in the alcohol and control
groups, baseline responding in Experiment 2 was  compared using
independent-samples t-tests (baseline responding of the alcohol
group in Experiment 1 is not included because corresponding con-

trol group sessions were not conducted). In Experiment 2, data
analyzed were the last 3 of the 5 days of 3-ISOPBC or vehicle
administration. Data were analyzed using separate statistical anal-
ysis of variance (ANOVA) for each group (Alcohol or Control) with
3-ISOPBC dose (BL, 0.0–30.0 mg/kg) as a repeated measure. Bonfer-
roni post-hoc tests were used for pair-wise comparisons of vehicle
with 3-ISOPBC doses.

3.  Results

During baseline sessions, stable drinking was observed in all
baboons, in both groups and few or no responses were recorded
on the inactive operanda (all operanda in Component 1, right lever
and drinkometer in Component 2, and left lever in Component 3).
Systematic differences between the groups during baseline ses-
sions were not observed for measures of seeking (Component 2:
FI responses and latency to complete the FI requirement). During
the baseline sessions preceding drug test sessions, the grand mean
(+ SEM) latency to complete the FI schedule was 639.5 (20.2) sec-
onds for the alcohol group and 609.7 (5.3) seconds for the control
group [t(6) = 1.09, p = 0.317]. The grand mean (+ SEM) number of FI
responses was 141.2 (68.4) for the alcohol group and 144.9 (96.2)
for the control group [t(6) = 0.03, p = 0.975].

During baseline sessions, the grand mean (+ SEM) alcohol intake
was 748.1 (78.6) ml  and 1.07 (0.07) g/kg, comparable to intake
which has previously been reported to produce blood-alcohol lev-
els (BAL) of >0.08% in baboons (Holtyn et al., 2014; Kaminski et al.,
2008). The grand mean non-alcoholic beverage intake during base-
line sessions was  1000.0 (0.0) ml.  While volume of intake of the
non-alcoholic beverage was higher than the volume of intake of
alcohol [t(6) = 2.40, p = 0.053], we have previously demonstrated
that 4% w/v alcohol and the non-alcoholic beverage function as
equivalent reinforcers (i.e., maintain similar breaking points under
a progressive ratio procedure) despite the fact that they maintain
different intake volumes (Duke et al., 2014).

3.1. Experiment 1: effects of acute administration of 3-ISOPBC

Table  1 shows effects of acute administration of 3-ISOPBC on
alcohol seeking and consumption under the chained schedule of
reinforcement. Acute administration of 3-ISOPBC did not signifi-
cantly change any of the measures of seeking (Component 2: FI
responses and latency to complete the FI requirement) or con-
sumption (Component 3: FR self-administration responses and
g/kg alcohol consumed). Behavioral observations conducted by
laboratory personnel that included the recording of any signs or
symptoms of drug side effects (e.g., sedation, muscle relaxation,
motor incoordination, gastro-intestinal symptoms, etc.) confirmed
that administration of doses up to and including 30.0 mg/kg were
safe and did not produce adverse effects. However, there was some
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Table 2
Experiment 2. Effects of chronic (5 day) administration of vehicle (V) and doses of 3-ISOPBC on seeking in Component 2 (C2) for alcohol (Alcohol Group) and a non-alcoholic
beverage (Control Group) under the chained schedule of reinforcement. Baseline (BL) is the grand mean of the 3 days preceding each chronic condition.

3-ISOPBC dose (mg/kg)

Alcohol Group BL V 5.0 10.0 20.0 F(4,16)

C2 Left Lever
FI  Resp

Mean 141.2 394.5 212.3 161.5 198.2 1.93
SEM  68.4 217.4 118.1 107.4 113.1

Left Lever FI Resp
Latency  (s)

Mean 639.5 620.4 706.0 676.5 755.3 1.05
SEM  20.2 10.8 58.1 52.0 93.2

Control Group BL V 5.0 10.0 20.0 F(4,8)
C2 Left  Lever

FI  Resp
Mean 144.9 128.2 200.4 154.8 75.0 1.03
SEM 96.2 55.3 131.1 85.1 37.7

Left Lever FI Resp
Latency  (s)

Mean 609.7 674.6 612.8 624.7 735.0 1.33
SEM 5.3 20.7 11.3 18.3 95.1

Note: FI, Fixed Interval; FR, Fixed Ratio; Resp, Response; Alc, Alcohol.

Fig. 1. Experiment 2. Effects of chronic (5 day) administration of 3-ISOPBC (5.0–20.0 mg/kg) on consumption in Component 3 of the chained schedule of reinforcement in the
(A)  Alcohol Group and (B) Control Group. Data shown are the group means (+ SEM) of self-administration responses (left panels), and g/kg alcohol consumed for the alcohol
group and ml/kg consumed for the control group (right panel). Baseline responding is indicated by the horizontal, dashed lines. *indicates p < 0.05 for pair-wise comparison
for  each 3-ISOPBC dose vs. vehicle.

difficulty with solubility at the 30.0 mg/kg dose. Because of this, in
combination with the difficulty in synthesizing the large quantities
needed for testing in baboons, the 30.0 mg/kg dose was not tested
under chronic conditions. Acute administration of 3-ISOPBC was
not conducted in the control group because it did not significantly
reduce seeking or consumption in the alcohol group.

3.2. Experiment 2: effects of chronic administration of 3-ISOPBC

Table  2 shows effects of chronic administration of 3-ISOPBC
on seeking for alcohol and the non-alcoholic beverage under the
chained schedule of reinforcement. Chronic administration of 3-
ISOPBC did not significantly change any of the measures of seeking
(Component 2: FI responses and latency to complete the FI require-
ment) in both the alcohol and control groups.

Fig.  1 shows effects of chronic administration of 3-ISOPBC on
consumption. In the alcohol group, chronic administration of 3-
ISOPBC decreased the number of self-administration responses
(Component 3: FR responses), with a significant decrease relative to
vehicle at the 10.0 mg/kg dose. Chronic administration of 3-ISOPBC
decreased g/kg alcohol consumed, with significant decreases rel-
ative to vehicle at the 10.0 and 20.0 mg/kg doses. In the control
group, 3-ISOPBC did not reduce the number of self-administration
responses or ml/kg consumed at any of the doses.

Fig. 2 shows effects of chronic administration of 3-ISOPBC on the
pattern of drinking in the first drinking bout. In the alcohol group,
chronic administration of 3-ISOPBC decreased the number of drinks
in the first drinking bout, with a significant decrease relative to
vehicle at the 10.0 and 20.0 mg/kg doses. Chronic administration
of 3-ISOPBC decreased the duration of the first drinking bout, with
significant decreases relative to vehicle at the 20.0 mg/kg dose. In
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Fig. 2. Experiment 2. Effects of chronic (5 day) administration of 3-ISOPBC (5.0–20.0 mg/kg) on the pattern of drinking in the first drinking bout in Component 3 of the chained
schedule of reinforcement in the (A) Alcohol Group and (B) Control Group. Data shown are the group means (+ SEM) of the number of drinks in the first drinking bout (left
panels), and the duration (seconds) of the first drinking bout (right panels). Baseline responding is indicated by the horizontal, dashed lines. *indicates p < 0.05 for pair-wise
comparison for each 3-ISOPBC dose vs. vehicle.

the control group, 3-ISOPBC did not reduce the number of drinks
in or the duration of the first drinking bout at any of the doses.

4.  Discussion

The �1 subunit of the GABAA receptor has been implicated in
the reinforcing- and abuse-related effects of alcohol in some studies
(Blednov et al., 2003; Harvey et al., 2002; June et al., 2007; Kaminski
et al., 2013). The present study investigated whether acute and
chronic administration of the benzodiazepine GABAA �1-preferring
ligand 3-ISOPBC could selectively reduce alcohol seeking and self-
administration in baboons. Pretreatment with 3-ISOPBC did not
reduce alcohol seeking in a group that self-administered alcohol
or in a control group that self-administered a non-alcoholic bever-
age. This is consistent with a prior similar study in which acute and
chronic administration of 3-PBC did not reduce alcohol seeking in
baboons responding under a chained schedule of alcohol reinforce-
ment (Kaminski et al., 2013). Chronic, and not acute, administration
of 3-ISOPBC reduced alcohol consumption in the alcohol group
without reducing consumption of the non-alcoholic reinforcer in
the control group. Thus, 3-ISOPBC may  have therapeutic poten-
tial in the treatment of alcohol use disorder due to its ability to
selectively reduce alcohol use.

Identification of the precise role of the GABAA �1 receptor in
alcohol reinforcement and consumption is ongoing. Knockout mice
without the GABAA �1 receptor have been shown to consume less
alcohol under a two-bottle alcohol versus water choice procedure
(Blednov et al., 2003) and an operant self-administration proce-
dure (June et al., 2007). The GABAA �1-preferring antagonist 3-PBC
has been shown to decrease alcohol self-administration in rodents

bred  for high alcohol intake (Harvey et al., 2002), as well as binge-
like drinking in a maternally deprived rodent model (Gondré-Lewis
et al., 2016). A similar reduction in alcohol maintained responding
was observed following administration of 3-ISOPBC in the mater-
nal deprivation model (Tiruveedhula et al., 2015). In baboons, 3-PBC
reduced self-administration of alcohol, but also had some effects on
self-administration of a non-alcoholic reinforcer (Kaminski et al.,
2013). In contrast to the findings in rodents and baboons, both
3-PBC and �CCT failed to attenuate alcohol drinking in rhesus
macaques (Sawyer et al., 2014). The reason for this contradic-
tory result is unclear; however, the highest dose of 3-PBC tested
in Sawyer et al.’s study (10.0 mg/kg) was  lower than that which
reduced total g/kg alcohol intake in the baboon model (18.0 mg/kg).
The choice of 3-ISOPBC for the present study was  based on the
structure of the branched isopropyl group, which would hinder
metabolism by beta (omega-1) oxidation. It was  hypothesized that
this would increase the duration of action and provide a ligand more
active in vivo than 3-PBC; this appears to be the case. In the present
study, 3-ISOPBC selectively reduced alcohol drinking.

In  both the alcohol and control groups, the majority of drinks
occurred within the first drinking bout. Prior studies also have
shown rats (Samson et al., 2000), baboons (Weerts et al., 2006),
and other primates (Boyle et al., 1998) to engage in “loading,”
wherein the highest rate of alcohol drinking occurs early in the
alcohol self-administration period followed by lower rates of drink-
ing for the remainder of the period. Chronic administration of
3-ISOPBC reduced the number of drinks in, and the duration of,
the first drinking bout in the alcohol group, but not in the con-
trol group. This suggests that 3-ISOPBC may  reduce alcohol intake
once consumption is initiated, which could be important in pre-
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venting drinking episodes from becoming a full relapse to heavy
drinking. Chronic administration of 3-PBC also has been shown
to decrease the number of drinks during the first 20 min  of alco-
hol availability in Component 3 of the chained schedule (Kaminski
et al., 2013). In Kaminski et al.’s (2013) study, the highest doses of
3-PBC tested (10.0 and 18.0 mg/kg) also decreased the number of
drinks in the first 20 min  in a control group that self-administered a
non-alcoholic beverage. Harvey et al. (2002) observed a decrease in
saccharin-maintained responding when the highest dose of 3-PBC
(20.0 mg/kg) was administered to rodents. The authors suggested
that the non-selective effects at higher doses of 3-PBC may  be due
to a saturation of all � receptors as 3-PBC binds to other � recep-
tors to some degree. It is worth emphasizing, however, that in both
studies, responding maintained by the non-alcoholic reinforcer
was reduced at higher doses than required to suppress alcohol
self-administration. In the present study, effects of 3-ISOPBC were
selective for alcohol. The mechanism by which 3-ISOPBC selectively
attenuated alcohol response in the present study is not known. Pos-
sible differences between 3-PBC and 3-ISOPBC include differences
in metabolism or ligand transport.

Although the mechanisms of action of the �1-preferring antag-
onists are not well understood, one possibility rests on the tonic
control in the central nervous system by opposing systems, includ-
ing GABA. It is possible that these �1-preferring antagonists simply
stabilize the benzodiazepine �1 GABA receptor system in the
antagonist conformation, the result of which would be to slightly
decrease the normal flow of chloride ions through the �1�2/3�2 ion
channel. The effect via the projections from the ventral tegmen-
tal area (Harvey et al., 2002) to the nucleus accumbens would
then effect the levels of dopamine release; this slight decrease
may be why Warnock, June et al. (personal communication) did
observe a decrease in alcohol self-administration in a binge drink-
ing model (rodents) in the complete absence of anhedonia or
depression. Tiruveedhula et al. (2015) reported that 3-ISOPBC
decreased alcohol consumption in a maternally deprived rodent
model. Gondré-Lewis et al. (2016) reported a similar effect with
3-PBC and proposed some involvement of �2-receptor subunits;
however, this effect could not be reversed by administration
of flumazenil. Consequently, this cannot be due to an effect at
�2�2/3�2 benzodiazepine GABAA receptors. It is possible that the
observed effect was mediated by a different set of �2-related recep-
tors (Gondré-Lewis et al., 2016) or to the �1-preferring antagonist
effect at benzodiazepine �1 GABAA receptors. Much work remains
to understand this observation. Nevertheless, the real strength of
the use of �1-preferring antagonists in the treatment of alcohol use
disorder stems from the fact that this type of ligand lacks sedating,
amnesic, and ataxic properties (Ator et al., 2010; Licata et al., 2009)
because it is an antagonist at this �1 benzodiazepine GABAA site.

The  present study examined whether the GABAA �1-preferring
ligand 3-ISOPBC possesses therapeutic potential in regard to its
ability to selectively reduce alcohol seeking and consumption. Alco-
hol use disorders are heterogeneous and development of more
efficacious and safe pharmacotherapies is needed to expand the
number of individuals who  may  benefit from treatment. In the
present study, 3-ISOPBC did not decrease alcohol seeking, but did
selectively reduce alcohol self-administration and consumption
by primarily altering the pattern of drinking. 3-ISOPBC selectively
reduced the number of drinks and the duration of drinks in the first
alcohol drinking bout. No changes in drinking patterns were found
for the non-alcoholic reinforcer. These data suggest that 3-ISOPBC
may be clinically useful for reducing alcohol use.
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Early life stress is a risk factor for excessive alcohol drinking and
impulsivity in adults and is mediated via a CRF/GABAA mechanism

Marjorie C. Gondré-Lewis1,2, Kaitlin T. Warnock2, Hong Wang1, Harry L. June Jr2, Kimberly A. Bell2, Holger Rabe3,
Veera Venkata Naga Phani Babu Tiruveedhula4, James Cook4, Hartmut Lüddens3, Laure Aurelian5, and
Harry L. June Sr2

1Department of Anatomy, Howard University College of Medicine, Washington, DC, USA, 2Department of Psychiatry and Behavioral Sciences,

Howard University College of Medicine, Washington, DC, USA, 3Department of Psychiatry, University of Mainz, Mainz, UK, 4Department of Chemistry

and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI, USA, and 5Department of Pharmacology and Experimental Therapeutics,

University of Maryland School of Medicine, Baltimore, MD, USA

Abstract

Childhood stress and trauma are associated with substance use disorders in adulthood, but the
neurological changes that confer increased vulnerability are largely unknown. In this study,
maternal separation (MS) stress, restricted to the pre-weaning period, was used as a model to
study mechanisms of protracted effects of childhood stress/traumatic experiences on binge
drinking and impulsivity. Using an operant self-administration model of binge drinking and a
delay discounting assay to measure impulsive-like behavior, we report that early life stress due
to MS facilitated acquisition of binge drinking and impulsivity during adulthood in rats.
Previous studies have shown heightened levels of corticotropin releasing factor (CRF) after MS,
and here, we add that MS increased expression levels of GABAA a2 subunit in central stress
circuits. To investigate the precise role of these circuits in regulating impulsivity and binge
drinking, the CRF1 receptor antagonist antalarmin and the novel GABAA a2 subunit ligand 3-
PBC were infused into the central amygdala (CeA) and medial prefrontal cortex (mPFC).
Antalarmin and 3-PBC at each site markedly reduced impulsivity and produced profound
reductions on binge-motivated alcohol drinking, without altering responding for sucrose.
Furthermore, whole-cell patch-clamp studies showed that low concentrations of 3-PBC directly
reversed the effect of relatively high concentrations of ethanol on a2b3g2 GABAA receptors, by
a benzodiazepine site-independent mechanism. Together, our data provide strong evidence
that maternal separation, i.e. early life stress, is a risk factor for binge drinking, and is linked to
impulsivity, another key risk factor for excessive alcohol drinking. We further show that
pharmacological manipulation of CRF and GABA receptor signaling is effective to reverse binge
drinking and impulsive-like behavior in MS rats. These results provide novel insights into the
role of the brain stress systems in the development of impulsivity and excessive alcohol
consumption.
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Introduction

Individuals differ in the risk for developing drug addiction

such that even after chronic usage, only a fraction of

individuals develop drug dependence (Everitt et al., 2008).

The rationale for this discrepancy is poorly understood;

however, stress during the perinatal period is correlated to

behavioral phenotypes linked to mood disorders and increased

addiction risk during adulthood (Deminiere et al., 1992;

Marinelli & Piazza, 2002). The experience of stress during

infancy causes long-lasting modulation of neurons in the

limbic system, as well as hyperactivity of the hypothalamus-

pituitary-adrenal (HPA) axis, which leads to elevated

circulating levels of corticosterone, other gluococorticoids,

and their metabolites (Koe et al., 2014) with widespread

biochemical consequences.

Even less is known about the neuronal mechanisms that

render the stressed offspring vulnerable to initiate binge

drinking and to exhibit abnormal impulsivity. Binge drinking

as defined by the National Institutes of Health is alcohol

intake which increases blood alcohol level to� 80 mg%

within a 2-hour period (Crabbe et al., 2011; NIH-NIAAA,

2004); a definition used by researchers and clinicians alike to

investigate the brain circuits involved in this type of excessive

alcohol intake (Gilpin et al., 2012; Vargas et al., 2014).

Cognitive impulsivity is a core deficit present in many

psychiatric conditions including drug addiction (Robinson

et al., 2009). While there are increasingly more
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categorizations of impulsivity related to risky behavior and

decision-making with various underlying neurochemical and

neuroanatomical bases, it is generally accepted that impul-

sivity is the tendency to respond prematurely without

foresight or regard for the consequences (Dalley et al.,

2011). Although the behavioral task in this study focuses on

impulsive choice where animals exhibit the temporal dis-

counting of reward, response disinhibition involving the

regulation of GABA signaling system in the cortico-limbic

system is an important factor in impulsivity (Dick et al.,

2013), and thus GABA dysregulation and modulation in MS

is important.

Non-human primates (Huggins et al., 2012) and rodents

exposed to MS, will self-administer ethanol during adoles-

cence and adulthood (Cruz et al., 2008; Garcia-Gutierrez

et al., 2015; Moffett et al., 2007; Romano-Lopez et al., 2012).

Although the mechanism for stress-induced binge drinking is

unknown, studies show that MS permanently alters expression

of various GABAA receptor subunits [e.g. a1, a2, g2] and

their mRNA in the amygdala and hippocampus (Caldji et al.,

2000; Edenberg et al., 2004; Hsu et al., 2003). The GABA

receptors, especially the GABAA a1 receptor, has been

extensively studied in relation to alcohol biochemistry, but

recent human linkage studies also implicate the GABRA2

gene, encoding the GABAA a2 receptor in regulating

excessive drinking and impulsivity, and reduced GABA

levels in human frontal lobes are associated with significant

levels of impulsivity in adolescents (Dick et al., 2006, 2013;

Edenberg et al., 2004; Enoch et al., 2010). The approach in

the present study focuses on the role of GABAA a2 subunit in

modulating excessive drinking and impulsivity in adults

exposed to MS.

Studies in MS models reveal elevated CRF in stress loci

(Nemeroff, 2004a,b; O’Malley et al., 2011). This effect of MS

can result in structural changes in neurons of the PFC and

significantly affect development of neurons in reward and

emotional memory circuits including nucleus accumbens and

hippocampus (Gondré-Lewis et al., 2016; Monroy et al.,

2010; Wang & Gondre-Lewis, 2013; Yang et al., 2015). In

addition, pharmacological and genetic studies support the

hypothesis that excessive alcohol consumption and binge

drinking is mediated by elevated CRF, via activation of the

CRF1 receptor [CRF1R] (Heilig et al., 2011; Koob, 2008,

2014; Phillips et al., 2015). Blockade of CRF1R in rodents,

attenuates alcohol intake in dependent rodents (Funk et al.,

2007; Gehlert et al., 2007; Koob, 2008; Lowery-Gionta et al.,

2012). The literature supports a model where CRF signaling

in the central amygdala (CeA) functions as a key regulator of

binge drinking (Lowery-Gionta et al., 2012), recruited during

excessive alcohol intake prior to the development of

dependence, with CRF as a mediator of the transition to

dependence.

A genetic polymorphism in the CRF1R gene was signifi-

cantly linked to binge alcohol drinking in humans (Treutlein

et al., 2006). Following exposure to stressful stimuli, adoles-

cents expressing this polymorphism displayed a predispos-

ition to excessive drinking leading to dependence in

adulthood (Blomeyer et al., 2008). Moreover, early life

adversity interacted with CRF to increase alcohol intake in

primates (Barr et al., 2009). Indeed, addiction-related changes

in prefrontal cortex CRF systems and their association with

executive (George et al., 2012) or drinking phenotypes

(Glaser et al., 2014) were reported; however, research to

support a mechanism for the CRF system in impulsivity is

lacking. Given that the experience of MS results in elevated

CRF (Nemeroff, 2004b; O’Malley et al., 2011) and permanent

alterations in GABA levels in stress circuits during adulthood

(Caldji et al., 2000; Hsu et al., 2003), combined with the

finding that MS results in long-term increases in alcohol in

rodents (Cruz et al., 2008; Moffett et al., 2007), we

hypothesized that the CeA and the mPFC, two loci of the

stress circuits and important for cognitive processing, could

influence vulnerability to initiate binge drinking or impul-

sivity following MS. Thus, the aim of this study was first to

investigate the extent of binge alcohol drinking and impul-

sive-like behavior in our MS model, and second to determine

if the action of pharmacological agents acting at CRF or

GABA receptors in the CeA or mPFC could revert these

behaviors to control levels.

Methods

Animals

Pregnant Sprague-Dawley dams were obtained from Harlan

Laboratories (Frederick, MD) and offspring used in this study

were born onsite at the veterinary facility. They were

subjected to the MS paradigm as described below, and were

tested for drinking and impulsivity behaviors as adults.

Equivalent number of males and females were used in the

binge drinking and impulsivity studies. Subjects were housed

in groups of 2–3 per plastic cage until drinking studies began.

The vivarium was maintained at an ambient temperature of

21 �C and was on a reverse 12-h light/dark cycle. All rats were

provided ad libitum access to food and water. All training and

experimental sessions for all subjects took place between 8:30

AM and 5:30 PM. The treatment of all subjects was approved

by the IACUC of the Howard University College of Medicine

and all procedures were conducted in strict adherence with the

National Institutes of Health Guide for the Care and Use of

Laboratory Animals.

MS regimen

The maternal separation (MS) paradigm was performed as

previously published (Roceri et al., 2002; Wang & Gondré-

Lewis, 2013; Gondré-Lewis et al., 2016), and was meant to

emulate recurrent stressful experiences during the neonatal

period. The number of pups in each litter ranged from 10 to

14 pups. To prevent litter effects, pups were sexed, culled to

n¼ 10 with equal number of males and females, and

redistributed to nursing dams at P1. Beginning at P2 until

weaning at P21, the separation comprised of removal of pups

from their nursing mothers. They were brought to a

designated room, separated from the mother, where the

temperature was monitored and maintained at 29 �C. Each

pup was placed in a cage located on a warmed pad, and visual

access to other pups was blocked with cardboard. These

conditions were maintained for 3 h per day from 11:00 AM to

2:00 PM. After the 3 h separation time, they were returned to

their home cage and rooms. Non-MS (CTL) pups were not

2 M. C. Gondré-Lewis et al. Stress, Early Online: 1–13
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separated from their mothers and were treated according to

standard animal facility regulations.

Use of animals

Forty adult rats from 21 litters were used; 12 for western

blotting and 28 for the behavioral studies, used over sev-

eral months. Although these studies are not aimed at examining

sex differences, both males and females were always repre-

sented. Therefore, this is a mixed-sex study. In any behavioral

experiment, to control for litter effects, the maximum number of

pups used from a single mother was one male and one female.

Therefore, for an n¼ 10 as an example, the minimum number of

dams was 5 for each condition. For the operant binge drinking

paradigm in Figure 2, there were n¼ 10 controls (5F, 5M) and

n¼ 10 MS (5M, 5F); 75% of these same animals were re-used

and added to other animals for the delay discounting experi-

ments; n¼ 9 controls (5F, 4M) and n¼ 11 for MS (8F, 3M). For

Western blotting analysis, a different cohort of animals was

used with the same principle of heterogeneity to reduce litter

effects; n¼ 5–6 controls (2–3F, 3M) and n¼ 6 for MS (3F and

3M). For drug dosage studies, some animals used in Figure 2

were combined with other rats of the same age that had

undergone similar sustained operant training to have a suffi-

cient number for surgical implantation of the cannulae and

subsequent behavioral testing, n¼ 5 for CeA drug infusion (3F,

2M) and n¼ 4 for mPFC studies.

Tissue preparation and immunoblotting

Naı̈ve, randomly-selected adult rats at P70 were sacrificed

and neural tissue was harvested for immunoblotting to semi-

quantitatively evaluate baseline levels of GABAA a2 and CRF

proteins in the CeA and mPFC of MS [N¼ 4–6] and CTL

[N¼ 5–6] rats. The brain was removed from each animal and

frozen, then sliced on a microtome in 300 mm sections. CeA

and mPFC tissue sections were collected by 1.0 mm

micropunch (Ted Pella, Redding, CA) from the right and

left hemispheres and pooled. Tissue micropunches were lysed

with CelLytic MT (dialyzable mild detergent, bicine, and

150 mM NaCl; Sigma-Aldrich, St Louis, MO) according to

manufacturer’s instructions. Total protein was determined by

the bicinchoninic assay (BCA) (Pierce, Rockford, IL).

Proteins were resolved by SDS-polyacrylamide gel electro-

phoresis and transferred to nitrocellulose membranes. Blots

were exposed to primary antibody overnight at 4 �C followed

by horseradish peroxidase (HRP)-labeled goat anti-mouse or

anti-rabbit secondary antibody for 1 h at room temperature

(RT) (Cell Signaling). Detection was with the ECL kit

reagents (Amersham Life Science/GE Healthcare, Pittsburg,

PA) followed by exposure to high-performance chemilumin-

escence film (Hyperfilm ECL; Amersham Life Science/GE

Healthcare, Pittsburg, PA), and quantitation was by densito-

metric scanning with a Bio-Rad GS-700 imaging densitom-

eter (Bio-Rad Laboratories, Hercules, CA). Each lane

represents an individual animal. The optical density (O.D.)

of protein bands on each digital image was normalized to the

O.D. of the loading control, and the animals for a given

condition were averaged and expressed as densitometric

units ±/- SE. Normalized values across three blots were used

for graph and analyzed with a Student’s t-test.

Antibodies and reagents

The generation and specificity of the rabbit-derived GABAA

a2 antibody was previously described (Liu et al., 2011; Pirker

et al., 2000). The GABAA a2 antibody was a gift from Dr W.

Sieghart (Department of Biochemistry and Molecular

Biology, Center for Brain Research, Medical University

Vienna, A-1090 Vienna, Austria). It was raised in rabbits

against peptides corresponding to amino acids 322–357 of the

a2 protein coupled to keyhole-limpet hemocyanin, affinity

purified and extensively characterized by various methods,

including immunoprecipitation, western blotting and

immunocytochemistry (Pirker et al., 2000). The Mouse anti-

GAPDH (0411, Cat# sc-47724) antibody was from Santa

Cruz Biotechnology (Santa Cruz, CA) and is well character-

ized and used in numerous studies including our own previous

publications (Liu et al., 2011).

Stereotaxic implantation of cannulae for
microinfusions

Adult MS rats were anesthetized via isofluorane/oxygen gas

inhalation and placed in a stereotaxic apparatus to allow for

bilateral implantation of 22-gauge guide cannulae into the

CeA or mPFC. The cannulae were anchored to the skull by

four stainless steel screws and dental acrylic. A stylet was

inserted into each cannula to maintain its viability and was

only removed during infusion times. The coordinates were

based on the rat brain atlas of Paxinos and Watson as follows:

CeA: AP, �2.0 mm; ML, ±3.6 mm; DV, –8.5 mm from

bregma; mPFC: AP, +2.7 mm; ML, ±1.45 mm; DV, –2.5 mm

from bregma at a 16� angle to the midline. Each cannula was

placed 1.0 mm above the intended target. This allowed the

injector tip to extend below the cannula tip. The animals were

given a 3-day recovery period before re-stabilization on the

delay discounting or operant drinking paradigms. After

behavioral experiments, cannula placement was confirmed

visually by examination of cryostat-generated 300 mm brain

slices post-sacrifice.

Drugs and microinfusion procedure

3-propoxy-9H-pyrido[3,4-b]indole hydrochloride, commonly

known as 3-propoxy-b-carboline hydrochloride (3-PBC),

acting at the GABAA a1/a2 receptor, was obtained from

Dr James Cook at the University of Wisconsin-Milwaukee

(Milwaukee, WI) (Namjoshi et al., 2011). Antalarmin hydro-

chloride, a CRF antagonist, was obtained from R&D Systems

Inc. (Minneapolis, MN). The drugs were mixed into 1 mL of

sterile PBS with Tween-20 added dropwise until dissolved,

and then bilaterally infused into the CeA or mPFC at a rate of

0.1 mL/min for 5 min using a Harvard infusion pump. The

overall design of experiments was such that doses of vehicle,

2, and 4mg of antalarmin, or 20 or 40 mg of 3-PBC were

injected immediately prior to animals being placed in the

operant or delay discounting chambers. Animals rested 1-3

days between doses. The antalarmin infusion studies occurred

before the 3-PBC infusion studies, and were at least 2 weeks

apart for any given animal. Different animals were used for

the CeA and mPFC infusions. Antalarmin and 3-PBC were

administered to MS rats to test their effects on the heightened

DOI: 10.3109/10253890.2016.1160280 Stress-induced binge drinking and impulsivity 3
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operant responding and impulsivity profile of MS, whereas

CTL rats do not consume significant levels of alcohol at

baseline, nor do their impulsivity profile differ significantly at

8 s compared to 0 s delay.

Delay discounting [impulsivity]

The impulsivity paradigm was executed as described by

Oberlin & Grahame (2009). Impulsivity is operationally

defined as choosing a smaller, immediate reward to the

exclusion of a larger delayed reward (Rachlin & Green, 1972),

and was quantified using the adjusted amount delay discount-

ing (DD) assay (Wilhelm & Mitchell, 2008). Operant boxes

consisted of a nosepoke light, two levers, a cue light above

each lever, a house light, and a 10 mL descending sipper tube

for saccharin reinforcement [0.03% w/v]. Control of the

operant boxes and data collection was with the MedPC IV

software (MedAssociates, St. Albans, VT). Prior to actual

testing, rats underwent four stages of behavioral shaping:

Stage 1 is run for 1 session, and all center nose pokes are

reinforced on a fixed ratio 1 (FR1) schedule with 20 s sipper

access, where 1 lever press is required for sipper access. At

stage 2, center nose pokes are reinforced on a FR1 schedule

with 10 s sipper access, and the animal must complete 20

trials to move on to next stage. Stage 3 also requires 20 trials,

but all trials are cued with a center light illuminated for 20 s.

There is a 10 s intertrial interval. At stage 4, a nose poke and

lever press is required for the 10-second sipper access, and

both right and left levers are reinforced equally, 20 trials with

a 10 s intertrial interval in 60 min is required (Oberlin &

Grahame, 2009).

After shaping, side bias was assessed by averaging the last

3 days’ choices on each side. The large reinforcer was then

assigned to their non-preferred side, to counter any initial side

bias. After shaping was completed, rats were assessed at 0 s

delay. This time point is used as a task to assess discrimin-

ation of reinforcer (saccharin) magnitude prior to introduction

of any delay to the larger reward. Immediate reward amount

started at 1 s of saccharin access, and was adjusted upwards

and downwards by 0.1 s based on the rat’s choices, i.e. an

immediate choice resulted in down-adjustment of the sipper

access time by 0.1 s on the next trial, whereas a delay choice

resulted in up-adjustment of the sipper access time by 0.1 s in

the next trial. The total adjustments in access were restricted

to a minimum of 0 s and a maximum of 2 s. Average adjusted

amounts of the reward over the last 20 trials of the session

served as the measure of adjusted amount. All rats received 2-

hour water access in their home cages at the end of daily

testing (Oberlin & Grahame, 2009).

Phase 1: Following behavioral shaping rats, were tested in

the delay discounting paradigm at 0, 1, 4, 8, 12, 16 and 20 s

delays. Each delay was tested for two consecutive sessions

and the two-day data for each delay was averaged.

Phase 2: Following completion of Phase 1, rats were

randomly separated into treatment groups and bilaterally

implanted with cannulae in the mPFC or CeA. After re-

stabilization on the DD paradigm at a delay of 8 s, rats were

infused with 3-PBC [20 or 40 mg] or antalarmin [2 or 4 mg] as

described above and run in the impulsivity paradigm with an

8 s delay.

Operant drinking apparatus

Animals were tested in 11 standard operant chambers

(Coulbourn Instruments, Inc., Lehigh Valley, PA) enclosed

in an isolated chamber as previously described ((Liu et al.,

2011). The operant apparatus contained two levers, two

dipper manipulanda, triple cue lights over each lever, and a

house light. The dipper cup size which contained the 10%

(v/v) alcohol or 3% (w/v) sucrose reinforcers was 0.1 mL. The

Coulbourn Graphic State ‘‘3’’ operant software (Coulbourn,

Whitehall, PA) was used.

Drinking in the dark multiple scheduled access
paradigm

To initiate excessive ‘‘binge’’ alcohol drinking, we employed

a modification of the drinking-in-the-dark-multiple-sched-

uled-access (DIDMSA) protocol (Bell et al., 2014; Liu et al.,

2011). First, the procedure entailed adapting the rats to a

reverse 12 h/12 h light/dark cycle which began at 7:00 PM

[lights on] and lasted to 7:00 AM [lights off]. Rats were

trained to orally self-administer EtOH daily for two 45 min

sessions with 30 min rest in between under an FR1 schedule

employing the sucrose fading technique (Harvey et al., 2002).

After a period of stabilization on the FR1 schedule, the

response requirement was then increased to an FR4 schedule,

where 4 lever presses are required for access to the reinforcer.

For each schedule, responding was considered stable when

responses were within ± 20% of the average responses for five

consecutive days. Stabilization on the FR4 schedule took �8

days. During the stabilization procedures, the animals were

never deprived of food or fluid. These procedures are well

established in our laboratory (Gondré-Lewis et al., 2016; June

& Eiler, 2007; Liu et al., 2011). Other cohorts of rats were

given a 3% [w/v] concentration of sucrose and trained in an

identical manner under the FR1, then FR4, schedule.

Following stabilization on the FR4 schedule for EtOH/

sucrose, the DIDMSA protocol began using an FR4 schedule

where the rats were given access to 10% alcohol, or 3%

sucrose on both the left and right levers. To initiate the

DIDMSA protocol during the dark phase, rats were given a

45 min operant session. After the session had elapsed, rats

were then placed in the home cage with food and water ad

libitum for 30 min. Rats were then given a second 45 min

operant session and subsequently returned to their home cage.

Rats engaged in the alcohol drinking for 21 consecutive days.

Using this protocol, the MS rats in our laboratory produced

consistent BACs of 99 ± 3 mg%. Sucrose control rats were

trained in a similar manner; but lever pressed for a 3% sucrose

solution instead of ethanol. The sucrose control rats allowed

for evaluation of reinforcer specificity following MS and drug

treatments.

Following 21 days of alcohol or sucrose drinking, rats were

surgically implanted with bilateral cannulae into the CeA or

mPFC. Rats (N¼ 5/6) were then infused with 3-PBC [20 or

40 mg] or antalarmin [2 or 4 mg] as described above and were

immediately placed in the operant chambers to respond for

alcohol or sucrose. A 2-hour session consisted of two 45 min

(90 min) access and 30 min of rest. Figure 1 shows the

timeline of experiments.

4 M. C. Gondré-Lewis et al. Stress, Early Online: 1–13
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Blood alcohol concentration measurement

To ensure animals were consuming pharmacologically rele-

vant amounts of EtOH to model human binge drinking (Bell

et al., 2006; Naimi et al., 2003; NIH-NIAAA, 2004), �100 mL

of whole blood was collected from the tail vein of MS

and CTL rats [N¼ 4/treatment group] into a heparin-coated

tube. After collection, the whole blood was immediately

centrifuged for 5 min at 1100 rpm. Plasma samples of 5 mL

were analyzed in a GL-5 Analyzer (Analox Instruments,

Luxenburg, MA). Microanalysis consisted of measuring the

oxygen consumption in the reaction between the sample of

alcohol and alcohol oxidase using a Clark-type amperometric

oxygen electrode. Alcohol reagent buffer solutions (pH 7.4)

and alcohol oxidase enzymes were used in all samples tested.

BACs were determined in duplicates after 90 min of drinking.

Cell culturing and cell transfection

HEK 293 cells plated on 15-cm plates in 15 mL of Minimum

Essential Medium (MEM, Gibco, Karlsruhe, Germany)

supplemented with 158 mg/L sodium bicarbonate, 2 mM

glutamine (Gibco, Karlsruhe, Germany), 100 U/mL penicil-

lin-streptomycin (Gibco, Karlsruhe, Germany), and 10% fetal

calf serum (Gibco, Karlsruhe, Germany). Cultures were

maintained at 37 �C in a humidified 95% O2/5% CO2

atmosphere for two days. Transfection with recombinant rat

GABAA receptors were carried out as described in detail

(Korpi & Luddens, 1993). Briefly, HEK 293 cells were

transfected using the phosphate precipitation method with rat

GABAA receptor cDNAs in eukaryotic expression vectors

[pRK5] for a2. For optimal receptor expression, final

concentrations [mg vector DNA per 15 mm tissue culture

plate] were: a2, 12.5mg.

Electrophysiology

Two days after transfection, single coverslips containing

HEK 293 cells were placed in a recording chamber

mounted on the movable stage of a fluorescence micro-

scope (Olympus IX70, Tokyo, Japan) and perfused at room

temperature with a defined saline solution containing (in

Figure 1. Map of behavioral experiments and locations of cannula implantation for animal studies. Panel A shows order of experiments demarcated by
the numbers in bold and the direction of arrows. Panel B shows the location in the mPFC and the CeA where cannula were implanted for experiments in
Figures 3, 4, and 6. Each slice represents a different animal.
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mM): 130 NaCl, 5.4 KCl, 2 CaCl2, 2 MgSO4, 10 glucose,

5 sucrose, and 10 HEPES (free acid), pH adjusted to 7.35,

with about 35 mM NaOH. Transfected cells were identified

by the fluorescence of the co-expressed enhanced green

fluorescent protein (eGFP). The amplitudes of peak

currents were measured from recorded traces. The GABA

concentration response curve was analyzed with a sigmoidal

non-linear regression fit, using the formula I¼ (Imax[L]nH)/

(EC50
nH+ [L]nH), where Imax is the maximal induced

current, L is the concentration of the agonist, and nH the

Hill coefficient. Ligand-mediated membrane currents of

these cells were studied in the whole-cell configuration

(Hamill et al., 1981). Patch clamp pipettes were pulled

from hard borosilicate capillary glass (0.5 mm ID, 1.5 mm

OD, Vitrex, Science Products GmbH, Hofheim, Germany)

using a horizontal puller (model P-97, Sutter Instruments,

Novato, CA) in a multi-stage process. Using a fast Y-tube

application system, the recombinant receptors were tested

for EtOH mediated effects on the receptor current response

with the approximate receptor subtype specific GABA

EC10, and GABA EC10 plus 30 mM or 100 mM EtOH.

Furthermore, both EtOH concentrations were tested

together with the GABA EC10 and 1 nM and 30 nM 3-

PBC. The responses of the cells were recorded by a patch

clamp amplifier (EPC-8, HEKA-Electronic, Lambrecht,

Germany) and the pClamp 8.1 software package (Axon

Instruments, Foster City, CA). The standard holding

potential for the cells was –40 mV. Whole cell currents

were low pass-filtered by an eight-pole Bessel filter at 5 or

3 kHz before being digitized by a Digidata 1322A interface

(Axon Instruments) and recorded by the computer at a

sampling rate of at least 1 kHz.

Statistical analyses

Data obtained using antalarmin and 3-PBC were analyzed by

separate univariate ANOVAs for binge alcohol or sucrose

drinking followed by Newman-Keuls post hoc tests. A two-

tailed t-test was used to analyze the HEK cell data. A

Student’s t-test was used for western blotting analysis. All

analyses were performed using the Sigma Plot 11.2 software

program (Systat Software Inc., San Jose, CA).

Results

MS facilitates acquisition of binge drinking and
impulsivity during adulthood

We tested if the experience of chronic 3-hour daily postnatal

MS, as a model of early life stress and childhood trauma,

could have protracted effects on alcohol drinking and

impulsivity-like behavior in adults. After stabilization on

the FR4 schedule for 8 days, responding for alcohol within a

2-hour period was recorded as presented in Figure 2(A). MS

rats showed significantly elevated levels of responding for

alcohol compared to CTL rats (Figure 2A) with a significant

main effect of Group [F[9,90]¼ 78.169, p50.001]. Post-hoc

analyses confirmed the elevated responding for alcohol by

MS rats for all 5 days tested [p� 0.05]. BACs measured after

the two 45 min drinking sessions were 99.3 ± 3.2 mg%/dL for

MS animals and 52.9 ± 6.2 mg%/dL in CTL rats (Figure 2B).

A significant main effect of Group [F[1,6]¼ 46.547, p50.001]

was confirmed with post-hoc analysis [p� 0.05].

While ‘‘impulsivity’’ is a complex behavioral phenotype

(Dick et al., 2010), in the present study, it was defined as

choosing a smaller, immediate reward to the exclusion of a

larger delayed reward (Rachlin & Green, 1972), and was

Figure 2. Baseline operant responding for
alcohol, blood alcohol concentration and
delay discounting (impulsivity) of MS versus
CTL rats. (A) Responding for alcohol is
increased in maternally separated [MS] rats
[N¼ 10] compared to control [CTL] rats
[N¼ 10]. (B) BACs of MS rats [N¼ 4] were
elevated above those of CTL rats [N¼ 4] and
were480 mg%/dL following 2 h of drinking.
(C) Adjusted amount is decreased [impul-
sivity is elevated] in MS rats [N¼ 11]
compared to CTL SD rats [N¼ 9]. *p� 0.05
by ANOVA followed by post-hoc tests.

6 M. C. Gondré-Lewis et al. Stress, Early Online: 1–13
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quantified using the adjusted amount delay discounting (DD)

assay (Wilhelm & Mitchell, 2008). The smaller the amount of

the reward, the greater is the impulsive inference. The MS rats

showed significantly increased levels of impulsivity [lower

adjusted amounts] compared with CTL rats (Figure 2C), with

significant main effects of Group [F[1,108]¼ 31.134,

p50.001] and Delay [F[6,108]¼ 14.764, p50.001]. Post-hoc

analyses confirmed the increased impulsivity of MS rats

compared to CTL rats for 1, 4, 8, 12, 16 and 20 s delays

[p� 0.05]. These data are consistent with other findings that

genetically bred high alcohol drinking (HAD) rats discounted

delayed and probabilistic rewards more steeply than LAD rats

(Wilhelm & Mitchell, 2008).

Antalarmin decreases impulsivity and binge alcohol
drinking in MS rats

Because of the elevated levels of CRF in the CeA and mPFC

of MS rats, we directly microinjected antalarmin, a CRF

antagonist, into the CeA or mPFC of animals previously

subjected to ethanol drinking or the delay discounting assay,

to determine its effects on impulsivity and alcohol binge

drinking, as well as the role CRF may play in regulating these

two behaviors. When directly infused into the CeA of MS rats,

antalarmin significantly reduced operant responding for

alcohol [Figure 3A; F[2,15]¼ 31.082; p50.001] and impul-

sivity [Figure 3B; F[2,15]¼ 6.667; p¼ 0.008] compared to

vehicle-treated MS rats. Post hoc analyses confirmed the

reduction of impulsivity and operant responding by both 2 mg

and 4 mg intracranial doses of antalarmin [p� 0.05].

To confirm that the antalarmin-induced reduction in

operant responding for alcohol was not due to an overall

reduction in the consumption of fluid or the drug’s potential

sedative effects, we evaluated the effect of antalarmin on

operant responding for sucrose in MS rats. Antalarmin did not

reduce sucrose responding [Figure 3C; F[2,12]¼ 0.0222;

p¼ 0.978] compared to vehicle-treated MS rats.

Similar reductions of impulsivity and alcohol binge

drinking were observed when antalarmin was microinjected

into the mPFC. Antalarmin significantly reduced operant

responding for alcohol [Figure 4A; F[2,9]¼ 8.974; p¼ 0.007]

and impulsivity [Figure 4B; F[2,30]¼ 30.464; p50.001]

compared to vehicle-treated MS rats. Post hoc analyses

confirmed the reduction of impulsivity and operant

Figure 3. Effects of antalarmin injected into the CeA on delay discounting, operant binge drinking, sucrose drinking. (A) Both doses of antalarmin
[N¼ 6/dosage group] reduced operant responding for alcohol of MS rats compared to vehicle-treated MS rats [N¼ 6]. (B) Both 2 and 4 mg doses of
antalarmin [N¼ 6/dosage group] microinjected into the CeA of MS rats elevated adjusted amount [decreased impulsivity] compared to vehicle
treatment in MS rats [N¼ 6]. (C) Both doses of antalarmin in the CeA [N¼ 5/dosage group] did not alter the responding of MS rats for sucrose
compared to vehicle [N¼ 5]. *p� 0.05 by ANOVA.

Figure 4. Effects of antalarmin injected into the mPFC on delay discounting, operant binge drinking and sucrose drinking. (A) Both 2 and 4 mg doses of
antalarmin microinjected into the mPFC decreased impulsivity [elevated adjusted amount] in MS rats [N¼ 6/dosage group] compared to vehicle
treatment [N¼ 6]. (B) Both doses of antalarmin also reduced responding of MS rats [N¼ 4/dosage group] for alcohol compared to vehicle [N¼ 4]. (C)
Both doses of antalarmin in the mPFC [N¼ 5/dosage group] did not alter the responding of MS rats for sucrose compared to vehicle [N¼ 5]. *p� 0.05
by ANOVA.
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responding by both 2 mg and 4 mg intracranial doses of

antalarmin [p� 0.05]. Antalarmin injected into mPFC did not

reduce responding for sucrose [Figure 4C; F[2,12]¼ 0.0843;

p¼ 0.920] compared to vehicle-treated MS rats.

GABAA a2 is elevated in the CeA and mPFC of naı̈ve
MS rats

GABAA a2 receptors have been implicated in the mechanisms

associated with excessive alcohol drinking behavior in

genetically alcohol-preferring rats. To determine if MS rats

share biochemical features of P rats, naı̈ve MS rats, never

exposed to any behavioral or alcohol drinking tests were

examined for expression of GABAA a2 subunit because

elevations of this receptor subunit is associated with excessive

drinking. Compared with CTL rats, MS rats showed signifi-

cantly elevated levels of GABAA a2 in the CeA and mPFC

[Figure 5A and B; p� 0.05].

3-PBC decreases impulsivity and binge alcohol drink-
ing in MS rats

Because of the importance of GABAA receptors in modulat-

ing the effects of stress and alcohol and the importance of the

CeA and mPFC in stress, impulsivity, and addiction

processes, we microinjected in vivo, 3-PBC, a GABA receptor

modulator, directly into the CeA or mPFC of MS rats that

were previously subjected to alcohol drinking or impulsivity.

3-PBC significantly reduced impulsivity [Figure 6A;

F[2,12]¼ 7.013; p¼ 0.010] and operant responding for alcohol

[Figure 6B; F[2,12]¼ 31.399; p50.001] compared to vehicle-

treated MS rats. Post hoc analyses confirmed the reduction of

impulsivity and operant responding by both 20 mg and 40 mg

intracranial doses of 3-PBC [p� 0.05]. 3-PBC in the CeA did

not reduce sucrose responding [Figure 6C; F[2,12]¼ 0.0537;

p¼ 0.948] compared to vehicle-treated MS rats.

Similar reductions of impulsivity and alcohol binge

drinking were observed when 3-PBC was microinjected into

the mPFC. Because 40mg of 3-PBC was shown to completely

reverse excessive drinking and impulsive choice in the CeA,

this single dose was used in the mPFC. It significantly reduced

impulsivity [Figure 6D; F[1,20]¼ 22.135; p50.001] and oper-

ant responding for alcohol [Figure 6E; F[1,6]¼ 15.474;

p¼ 0.008] compared to vehicle-treated MS rats. Post hoc

analyses confirmed the reduction of impulsivity and operant

responding by the 40mg intracranial dose of 3-PBC [p� 0.05].

3-PBC in the mPFC also did not reduce responding for sucrose

[Figure 6F; F[2,12]¼ 0.0600; p¼ 0.942] compared to vehicle-

treated MS rats.

3-PBC modulates alcohol action in vitro at a
non-benzodiazepine binding site

Given the consistent finding that 3-PBC is an antagonist of

alcohol motivated behaviors as shown here and in the

literature (Harvey et al., 2002; Kaminski et al., 2013), we

evaluated the capacity of this ligand to block alcohol’s action

at the GABAA a2-containing receptor subtype using electro-

physiological whole cell recordings in HEK cells. Recent

work has implicated the GABAA a2- receptor subtype as a

direct substrate for the effects of alcohol. Figure 7(A) shows

that low doses of 3-PBC, at 30 nM, reduced the low and high

dose (30 and 100 mM) alcohol enhancement of currents at

GABAA a2b3g2 receptors [p� 0.05] in HEK293 cells. To

determine if 3-PBC binds at the benzodiazepine-specific

binding site of GABA receptors, a2b3g2 and a5b3g2

expressing HEK cells were treated with either Diazepam or

3-PBC at varying doses. As expected, diazepam greatly

potentiated the effects of GABA on whole cell currents

beginning at 0.1 mM, an effect which was effectively blocked

by Ro15-1788 (flumanezil), a specific antagonist for the BDZ

site (Figure 7B and C). By contrast, the potentiating effects of

1 to 100 mM 3-PBC on a2b3g2 but not a5b3g2 were resistant

to Ro15-1788 (Figure 6D and E). These findings suggest that

the action site on a2b3g2 at which 3-PBC blocks alcohol’s

effects is distinct from the BDZ site.

Discussion

Despite the pervasive human clinical literature linking

impulsivity and binge drinking during adolescence and

young adulthood (Dick et al., 2006, 2013), little direct

behavioral or neurobiological evidence exists to support this

hypothesis. In the present study, MS, restricted to the early

postnatal pre-weaning period, directly led to increased

addiction risk illustrated by enhanced acquisition and main-

tenance of binge drinking during adulthood in rodents, with

BACs� 95 mg%/dL. While MS was previously reported to

cause long-term increases in alcohol self-administration in

adult animals (Cruz et al., 2008; Moffett et al., 2007), subjects

did not approximate the binge alcohol levels that have been

reported in human alcoholics (Liu et al., 2011; Yang et al.,

2011). Thus, the study emulates human binge drinking due to

protracted effects of childhood stress on adult alcohol-

drinking behavior. MS also facilitated acquisition of cognitive

impulsivity during adulthood.

Figure 5. GABAA a2 protein concentration in CeA and mPFC of MS
versus CTL rats. The levels of GABAA a2 expression were significantly
higher in the CeA (A) and mPFC (B) of MS rats [N¼ 6] compared to
CTL rats [N¼ 5 for mPFC, n¼ 6 for CeA]. *p� 0.05 by ANOVA.

8 M. C. Gondré-Lewis et al. Stress, Early Online: 1–13
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Impulsivity is a behavioral phenotype associated with

vulnerability to alcohol use initiation, onset of binge drinking

behaviors, early-stage alcohol problems, and end-stage diag-

noses of alcohol dependance and abuse (Dick et al., 2010;

Lejuez et al., 2010; Rubio et al., 2008). Therefore, this

behavior may be an important target of therapeutic interven-

tion. As illustrated in Figure 2(C), MS produced a remarkable

impulsivity phenotype across each of the 8 delay intervals

tested, with the 16 s interval reaching the maximal level of

impulsivity detectable. However, it is not known if binge

drinking facilitated acquisition of the impulsivity phenotype,

or vice versa. Nevertheless, our findings suggest, MS is a

powerful factor in the initiation of both binge drinking and

impulsivity, and may influence vulnerability to their co-

morbidity.

The MS model employed here is well established (Hulshof

et al., 2011; Monroy et al., 2010; Wang & Gondre-Lewis,

2013; Wang et al., 2015), and uses repeated 3-hour separation

of newborns from the dams and their littermates over a 20-

21 day period, with controls for temperature (room kept at

29 �C) and conditions that diminish potential auditory

stressors. We prefer this MS model to others that use 6 h of

MS (MS360) or a single 24 h maternal separation at P9

(Nylander & Roman, 2013; Penasco et al., 2015) because

these prolonged means of inducing maternal deprivation

disrupt the infant’s key metabolic needs for feeding, hydra-

tion, and warmth, necessary for survival. Additionally, in

many reports, bodily contact (if any) between siblings is not

specified, and this factor could introduce inconsistent out-

comes across studies. These and other MS paradigms using 2-

4 bottle free choice show results that range from no statistical

difference in alcohol consumption compared to control

animal facility reared animals whether MS was for 15 min

or 360 min (Daoura et al., 2011; Gustafsson et al., 2005;

Jaworski et al., 2005), to a reduction in alcohol intake,

depending on the rat background and sex (Roman et al.,

2003). However, many recent free-choice studies report a

clear preference of MS animals for ethanol with MS180 (Huot

et al., 2001) or a 24 h deprivation at P9 (Penasco et al., 2015).

Therefore, although different MS paradigms or alcohol

exposure regimen may influence the findings for MS-induced

alcohol preference (Huot et al., 2001; Penasco et al., 2015;

Figure 6. Effects of 3-PBC in the CeA and
mPFC on delay discounting, operant binge
drinking, and sucrose drinking. (A) Both 20
and 40mg doses of 3-PBC microinjected into
the CeA, elevated adjusted amounts
[decreased impulsivity] in MS rats [N¼ 5/
dosage group] compared to vehicle treatment
[N¼ 5]. (B) Both doses of 3-PBC also
reduced operant responding of MS rats
[N¼ 5/dosage group] for alcohol compared to
vehicle [N¼ 5]. (C) Neither dose of 3-PBC in
the CeA [N¼ 5/dosage group] altered the
responding of MS rats for sucrose compared
to vehicle [N¼ 5]. (D) The 40 mg dose of 3-
PBC microinjected into the mPFC, elevated
adjusted amount [decreased impulsivity] in
MS rats [N¼ 4] compared to vehicle treat-
ment [N¼ 4]. (E) 40mg of 3-PBC also
reduced operant responding of MS rats
[N¼ 4] for alcohol compared to vehicle
[N¼ 4]. (F) 3-PBC in the mPFC [N¼ 5] did
not alter the responding of MS rats for
sucrose compared to vehicle [N¼ 5].
*p� 0.05 by ANOVA.

DOI: 10.3109/10253890.2016.1160280 Stress-induced binge drinking and impulsivity 9

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
W

is
co

ns
in

-M
ilw

au
ke

e]
 a

t 1
1:

53
 3

1 
M

ar
ch

 2
01

6 

438



www.manaraa.com

Roman et al., 2003), in the current study in which the animals

must press the lever 4 times (i.e., work) for the 10% ethanol

reinforcement, we clearly demonstrate here and elsewhere

(Gondré-Lewis et al., 2016) that MS exposure enhances the

propensity for alcohol self-administration. Further, using this

same MS model for assessment of delay-discounting, we

show that MS causes impulsive-like behavior compared to

controls.

Persistent elevations of adult CRF levels are present in

brain regions that modulate stress both after maternal

separation, (O’Malley et al., 2011) and in non-stressed high

alcohol drinking rodents (Sommer et al., 2008; Zorrilla et al.,

2013). Elevations in CRF are purported to regulate binge

drinking in rodents (Lowery-Gionta et al., 2012) and humans

(Treutlein et al., 2006), and were suggested to play a salient

role in the transition to dependence (Koob, 2008). However,

the role of CRF in regulating binge drinking and cognitive

impulsivity in rodents triggered by stress/negative affective

states has not been investigated. To test the hypothesis, the

CRF1 receptor antagonist antalarmin was infused in the CeA

and mPFC. Antalarmin in each locus produced profound and

selective reductions on binge drinking and markedly reduced

Figure 7. Effects of 3-PBC in vitro on attenuating alcohol-mediated actions via a benzodiazepine-independent manner. (A) Whole-cell recordings of
HEK 293 cells expressing recombinant rat a2b3g2 GABAA receptors were performed. Currents were normalized to the GABA concentration specific
for the receptor subtype EC10 under in vitro conditions. Two concentrations of EtOH [30 mM and 100 mM] in the absence or presence of 1 nM and
30 nM 3-PBC, respectively, were co-applied with 1.5 mM GABA. Asterisks [*] denote p� 0.05 in a two-sided t-test, compared to 0 or 1 nM PBC. (B-E)
Increasing concentrations of diazepam (B, C) or 3-PBC (D, E) in the absence (white) or presence (gray) of 10 mM Ro15-1788 were co-applied with the
receptor specific GABA concentrations at about the EC20. Asterisks (*) denote p50.05 in a two-sided t-test comparing diazepam and 3-PBC plus
Ro15-1788 to the test compounds alone. Error bars indicate the standard error of the mean (± SEM) for at least four cells.

10 M. C. Gondré-Lewis et al. Stress, Early Online: 1–13

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
W

is
co

ns
in

-M
ilw

au
ke

e]
 a

t 1
1:

53
 3

1 
M

ar
ch

 2
01

6 

439



www.manaraa.com

impulsivity-like responding. These findings provide strong

evidence that CRF is a major neuronal regulator of binge

drinking and cognitive impulsivity induced by MS. Hence, as

with alcohol-dependent subjects (Heilig et al., 2011; Koob,

2008; Lowery & Thiele, 2010) CRF1R antagonists may

represent an important therapeutic intervention for psychiatric

disorders due to sustained uncontrollable stressors, such as

childhood trauma.

When applied directly into the CeA and mPFC, two brain

regions that exhibit a high density of the GABAA a2 subunit

protein (Fritschy & Mohler, 1995; Kaufmann et al., 2003), 3-

PBC markedly reduced alcohol drinking in MS rats

(Figure 6), but sucrose drinking was undiminished between

groups, indicative of a reinforcement specific behavior of MS

rats, and also that 3-PBC was not acting as a sedative (Harvey

et al., 2002). Consistent with naı̈ve alcohol-preferring rats,

which exhibited elevated GABAA a2 protein compared to

non-preferring rats (Liu et al., 2011), the current study reveals

increased baseline levels of GABAA a2 protein in MS relative

to controls (Figure 3). This could indicate similar modes of

induction of binge drinking in both P and neonatally stressed

rat models. We show that modulation of the a-2 receptor is

sufficient to attenuate binge drinking in MS as was shown in

alcohol preferring rats (Harvey et al., 2002; Liu et al., 2011).

In addition to the GABAA receptor functions, reductions in

overall cortical GABA levels in human adolescents and young

adults are highly associated with ‘‘cognitive impulsivity’’ and

response inhibition (Silveri et al., 2013). In the current study

on the stressed rat model, we do not directly measure the

levels of the GABA neurotransmitter, but this could be an

important next step in further characterizing the MS model for

alcohol, impulsivity and other neuropsychiatric presentations.

Indeed, in the current study, the pups were isolated from each

other as well as from their mother during the 3-hour

separation, thus the possibility exists that infant peer isolation

could interact with maternal separation to elicit the effects

reported.

We tested the effectiveness of alcohol alone to modulate

the GABAA a2b3g2 receptors, and 3-PBC to modulate

alcohol’s action at this GABAA receptor in HEK cells in vitro.

The magnitude of the 100 mM concentration suggests a

response sensitivity of the GABAA a2b3g2 receptors to

moderate and high doses of alcohol. These data provide

compelling evidence that 3-PBC was highly effective in

attenuating alcohol’s agonistic effects on whole cell currents,

particularly at the 30 nM concentration. Because benzodi-

azepine action at the GABA site is well known for its sedative

and anti-psychotic effects, the term binds at the ‘‘benzodi-

azepine receptor’’ or ‘‘benzodiazepine site’’ is promiscuously

employed when there is an effect on the GABA receptor.

However, our data in HEK cells show that 3-PBC does not

seem to act via the classical benzodiazepine receptor because

the potentiation of GABA at its EC50 by 3-PBC was not

blocked by the universal GABAA receptor null modulator Ro

15-1788, also known as flumazenil (Figure 7). It is increas-

ingly evident that the GABAA receptor demonstrates specific

sensitivity to many molecules aside from GABA, including

ethanol (Borghese et al., 2014), dopamine (Hoerbelt et al.,

2015) and BDZ (Sieghart, 2015), among others. Thus,

although our data demonstrates a potent reduction of alcohol’s

effects on a2b3g2 by 3-PBC, and the association of GABAA

a2 with impulsive behavior in alcoholics (Villafuerte et al.,

2012), indicating that 3-PBC can specifically act at the a2

site, in a BDZ-independent manner, we cannot rule out the

possibility that 3-PBC might interact with more than one

binding site at the GABAA receptor. Additional studies are

needed to further characterize the actions of 3-PBC in MS.

However, 3-PBC was shown to be a safe ligand devoid of

untoward effects when given orally and did not work

additively/synergistically with alcohol, or other benzodiazep-

ine agonists (Harvey et al., 2002; June & Eiler, 2007). Hence,

therapeutically, 3-PBC may represent a safe ligand to evaluate

for stress-induced binge drinking and cognitive impulsivity

induced by stressful life events such as childhood trauma.

Although these results are compelling, there are sex-based

differences in behavior, brain function and even alcohol

clearance that cannot be resolved in the mixed-sex design of

the current study. Future studies aimed at addressing sex

differences in response to stress are necessary to enlighten a

potential heterogeneity in ensuing psychoaffective behaviors

following the experience of maternal separation or other early

life stress. Further, other more common agonists and antag-

onists to GABA receptors as well as triple uptake inhibitors

should be tested to expand our understanding of neurophysio-

logical (dys) function after undergoing early life stress.

Conclusions

In summary, our data provide strong evidence that MS is a

major risk factor for excessive drinking and impulsivity.

These behaviors are greatly attenuated by the GABAA ligand,

3-PBC, and the CRF antagonist, antalarmin. These results

provide novel insights into the role of the brain stress systems,

especially CRF, in the development of impulsivity and

concomitant excessive drinking. Therapeutically, these drugs

represent two putative therapeutic agents demonstrated here

to be effective in attenuating both binge drinking and

cognitive impulsivity induced by stressful life events.
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Triple monoamine uptake inhibitors demonstrate a
pharmacologic association between excessive drinking
and impulsivity in high-alcohol-preferring (HAP) mice
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ABSTRACT

Approximately 30% of current drinkers in the United States drink excessively, and are referred to as problem/hazardous
drinkers. These individuals, who may not meet criteria for alcohol abuse or dependence, comprise binge, heavy
drinkers, or both. Given their high prevalence, interventions that reduce the risk of binge and heavy drinking have
important public health implications. Impulsivity has been repeatedly associated with excessive drinking in the clinical
literature. As impulsivity is correlated with, and may play a critical role in, the initiation and maintenance of excessive
drinking, this behavior may be an important target for therapeutic intervention. Hence, a better understanding of
pharmacological treatments capable of attenuating excessive drinking and impulsivity may markedly improve clinical
outcomes. The high-alcohol-preferring (HAP) mice represent a strong rodent model to study the relationship between
impulsivity and excessive alcohol drinking, as recent evidence indicates they consume high levels of alcohol through-
out their active cycle and are innately impulsive. Using this model, the present study demonstrates that the triple
monoamine uptake inhibitors (TUIs) amitifadine and DOV 102, 677 effectively attenuate binge drinking, heavy drink-
ing assessed via a 24-hour free-choice assay, and impulsivity measured by the delay discounting procedure. In contrast,
3-PBC, a GABA-A α1 preferring ligand with mixed agonist-antagonist properties, attenuates excessive drinking without
affecting impulsivity. These findings suggest that in HAP mice, monoamine pathways may predominate as a common
mechanism underlying impulsivity and excessive drinking, while the GABAergic system may be more salient in
regulating excessive drinking. We further propose that TUIs such as amitifadine and DOV 102, 677 may be used to treat
the co-occurrence of impulsivity and excessive drinking.

Keywords Alcohol use disorders, delay discounting, HAP mice, impulsivity, triple uptake inhibitor.
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INTRODUCTION

Excessive alcohol drinking is the third leading lifestyle-
related cause of death in the United States, and has been
suggested to kill approximately 75 000 people annually.
It results in 2.3 million years of potential life lost, about
30 years of life lost per death (Center for Disease Control

and Prevention 2001; Chikritzhs et al. 2001; Town et al.
2006). Excessive drinkers are considered to be binge
drinkers, heavy drinkers or both (Town et al. 2006).
Binge drinkers include men who consume five or more
drinks and women who consume four or more drinks
on one or more occasions in the past month. For the
typical adult, this pattern often results in a blood alcohol

*The authors contributed equally to this article.
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concentration (BAC) of 0.08 gram percent or above in a
2-hour period (NIAAA 2004). Heavy drinking includes
those who have consumed 60 drinks in the past month
for men, and 30 for women (Town et al. 2006). While
excessive drinkers are at significantly increased risks
for serious medical conditions (e.g. hypertension, cardio-
myopathy, obesity and liver diseases) (Center for Disease
Control and Prevention 2001; Chikritzhs et al. 2001),
most excessive drinkers do not meet criteria for alcohol
abuse or dependence (Dawson, Grant & Li 2005). More-
over, emerging evidence suggests that, in contrast to
alcohol dependence, excessive drinking contributes to
most alcohol-related problems in the United States
(Institute of Medicine 1990; Town et al. 2006; Dawson
et al. 2005; Courtney & Polich 2009). However, few medi-
cations have been investigated for treatment of such
populations despite the high prevalence of excessive
drinking.

Interestingly, the trait of impulsivity is correlated with
addiction to virtually all drugs of abuse (Kirby, Petry &
Bickel 1999; Hoffman et al. 2006), but particularly with
dimensions of excessive alcohol drinking (Rubio et al.
2008; Dick et al. 2010; Vanderveen, Cohen & Watson
2012). Impulsivity is involved in vulnerability to alcohol
use initiation, onset of binge drinking behaviors, early-
stage alcohol problems, and end-stage diagnoses of
alcohol dependence and abuse (reviewed in Lejuez et al.
2010). Therefore, this behavior may be an important
target of therapeutic intervention. However, current clini-
cal treatments are ineffective in treating both impulsivity
and excessive alcohol drinking (Oberlin et al. 2010).Thus,
a better understanding of the pharmacological treat-
ments capable of regulating excessive alcohol drinking as
well as impulsivity may improve clinical outcomes.

Research in our laboratories has focused on impulsive
choice, also referred to as ‘cognitive impulsivity’ (Rachlin
& Green 1972; Winstanley et al. 2004). This definition is
experimentally assessed using a task called delay dis-
counting (DD). The DD task is widely used in human and
animal studies, and is similar between species, lending
good face validity to assessments of impulsivity in experi-
mental animal models (Richards et al. 1997; Bickel,
Odum & Madden 1999; Petry 2001). In the present study,
we focused on investigating the potential pharmacologi-
cal overlap between cognitive impulsivity and two modes
of excessive drinking: binge drinking and heavy drinking
assessed via 24-hour free choice. Both types of excessive
drinking have been shown to result in alcohol
dependence/use disorders in some individuals (King et al.
2011).

Preclinical research employing alcohol-preferring
rodent lines has consistently demonstrated that the asso-
ciation between impulsivity and alcohol use is genetically
mediated (e.g. Wilhelm & Mitchell 2008; Oberlin &

Grahame 2009). Employing high-alcohol-drinking
(HAD) and low-alcohol-drinking (LAD) rats, Wilhelm &
Mitchell (2008), using the DD assay, demonstrated that
HAD rats were more impulsive than LAD rats. Using
replicate selected lines of outbred high-alcohol-preferring
(HAP) mice, Oberlin & Grahame (2009) showed that both
HAP2 and HAP1 lines of mice were more impulsive than
the LAP2 and HS/Ibg lines, respectively. Together, these
results in naïve, alcohol-preferring rodents suggest that
impulsivity is a heritable difference that precedes the ini-
tiation of alcohol use. However, despite the genotypic cor-
relation of impulsivity and alcohol use, no research has
been able to identify a single therapeutic modality capable
of attenuating both phenotypes (Mitchell et al. 2007;
Oberlin et al. 2010). Hence, it is plausible that differential,
though genetically linked, neurobiological mechanisms
contribute to the development of impulsivity and alcohol
drinking.

In an effort to identify both neurochemical targets and
a single pharmacotherapy capable of attenuating both
excessive drinking and impulsivity, our laboratories have
employed a series of compounds referred to as both
‘broad spectrum’ antidepressants (ADs) and triple uptake
inhibitors (TUIs) (Skolnick & Basile 2007). Unlike cur-
rently available ADs, these agents inhibit the uptake of
dopamine (DA), norepinephrine (NE) and serotonin
(5-HT), with varying potencies at their respective
monoaminergic transporters. The exact neural mecha-
nisms regulating cognitive impulsivity are not known;
however, the monoamines DA, NE and 5-HT are widely
implicated in modulating impulsivity based on the clini-
cal effects of drugs that increase the activity of the rel-
evant pathways, and by evidence that dopaminergic,
noradrenergic and/or serotonergic neurotransmission is
deficient in patients and animal models of impulse
control disorders (Bevilacqua et al. 2010; Economidou
et al. 2012). Further evidence suggests that hypo-
functional mesolimbic monoaminergic pathways con-
tribute to the clinical manifestations of alcoholism
(Johnson 2008; Simon O’Brien et al. 2011). The γ-amino
butyric acid-A (GABAA) receptors are also an established
target for excessive drinking (Harris, Trudell & Mihic
2008). Recent research indicates a significant role for
both the GABA α1 and α2 subunits in regulating binge
drinking (Liu et al. 2011; Yang et al. 2011). Significant
support for the role of these subunits in regulating exces-
sive drinking in the clinical literature is also well estab-
lished (see Liu et al. 2011). However, few studies have
investigated a pharmacologic association between exces-
sive drinking and impulsivity using GABAergic and
monoaminergic ligands. Because of the critical role of
impulsivity in alcohol use disorders, this behavior may be
an important target of therapeutic intervention, and
hence improve clinical outcomes.
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In the present research, based on our previous find-
ings that the two TUIs, amitifadine (formerly DOV 21,
947) and DOV 102, 677, and 3-PBC, a GABA-A α1 pre-
ferring ligand with mixed agonist-antagonist properties
(Harvey et al. 2002), reduced excessive drinking in
alcohol-preferring (P) rats (June & Eiler 2007; Warnock
et al. 2012; Yang et al. 2012), we hypothesized that the
three ligands would reduce two modes of excessive drink-
ing (i.e. binge drinking and heavy drinking) and impul-
sivity in HAP mice. The HAP mouse model was an
optimal model to use for these studies, because these mice
are both excessive drinkers and ‘innately’ impulsive
(Oberlin & Grahame 2009; Matson & Grahame 2011).

MATERIALS AND METHODS

Experiment 1: effects of amitifadine, DOV 102, 677,
and 3-PBC on binge alcohol and sucrose drinking

Subjects

Two cohorts of male and female HAP2/HAP3 mice
(N = 105) were used to model binge alcohol drinking in
humans using the reverse light cycle as previously
reported in rats (Liu et al. 2011; Warnock et al. 2012).The
first cohort comprised 27 male and 20 female HAP2 mice
of the 34th generation, and 14 male and 14 female HAP2
mice of the 37th generation.The second cohort comprised
15 male HAP2 mice of the 35th generation, and 15 male
HAP3 mice of the 14th generation. The second cohort,
while drug naïve, had previously participated in a study
evaluating affect-related behaviors (see Can, Grahame &
Gould 2012).The amount of time between the two studies
was approximately 4 weeks. Animals were approximately
4–5 months of age at the beginning of the experiments.
All subjects for all experiments were individually housed.
The treatment of subjects for experiment 1 was approved
by the institutional review board of the University of
Maryland School of Medicine.

Compounds

Amitifadine and DOV 102, 677 were obtained from
DOV Pharmaceutical (Somerset, NJ, USA). 3-PBC was
obtained from Dr. James Cook of the University of
Wisconsin-Milwaukee (Milwaukee, WI, USA). Drug for-
mulations were prepared immediately before each test
session in a volume of 10 ml/kg using deionized (DI)
water. They were administered by oral gavage 25 minutes
prior to binge and locomotor activity experiments due to
the half-life/estimated half-life in the previously pub-
lished studies (see June & Eiler 2007; Tizzano et al. 2008).
Animals were habituated to the gavage procedures by
administering DI water alone over a number of experi-
mental sessions.

Equipment

Binge drinking procedures were tested in standard mouse
operant chambers (Coulbourn Instruments, Inc., Lehigh
Valley, PA, USA) as previously described (June & Eiler
2007; June et al. 2007). The dipper cup size was 0.1 ml,
and contained 10% (v/v) alcohol or 1% (w/v) sucrose
reinforcers. The Coulbourn Graphic State ‘3’ operant soft-
ware was used (June & Eiler 2007; June et al. 2007).

Drinking in the dark multiple-scheduled access
(DIDMSA) paradigm

The DIDMSA protocol was used to initiate binge drinking
with HAP mice. Identical and complete training proce-
dures have recently been employed in P rats (Liu et al.
2011; Warnock et al. 2012). To initiate the DIDMSA pro-
tocol in mice, the subjects were given a 30-minute
operant session using an FR-4 schedule. After the initial
30-minute session had elapsed, mice were placed in the
home cage with food and water ad libitum for 1 hour. Mice
then received two additional 30 minutes of alcohol access
periods, spaced 1 hour apart over the 21 consecutive days
time course. In total, animals received three daily
30-minute access periods, each spaced 1 hour apart.
Other cohorts of mice were trained in an identical
manner for 1% (w/v) sucrose. The sucrose concentration
was selected so response rates would be relatively similar,
eliminating the potential confound of a difference in
reinforcer efficacy (June & Gilpin 2010).

BAC measurement

To ensure that the HAP mice were consuming pharmaco-
logically relevant amounts of ethanol to effectively model
human binge drinking (e.g. Naimi et al. 2003), BACs were
taken as previously reported (June & Eiler 2007; June et al.
2007) on day 21 from a subset of mice randomized into
the drug treatment groups. The BAC levels at 90 minutes
were consistent with the NIAAA definition of binge
alcohol consumption in humans (NIAAA 2004).

Procedural summary

On day 22, mice in the drug treatment groups were ran-
domly administered their respective treatments to evalu-
ate effects on binge alcohol drinking. A total of 28 mice
comprising 24 males and four females of the 34th gen-
eration were selected to receive amitifadine. Mice were
randomly divided into four (n = 7) dosage groups
(vehicle, 25, 50 and 75 mg/kg). After completion of the
amitifadine treatment for binge alcohol drinking and a
7-day washout period, 24 of the 28 mice that partici-
pated in the alcohol study were then randomly divided
into four (n = 6) dosage groups (vehicle, 25, 50 and
75 mg/kg), and retrained on the binge drinking proce-
dure using sucrose as a reinforcer.
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Thirty-five mice comprising three males and 16
females of the 34th generation HAP2 line, and 14 males
and two females of the 37th generation HAP2 line were
tested using DOV 102, 677. Mice were randomly divided
into five (n = 7) dosage groups (vehicle, 12.5, 25, 50 and
75 mg/kg). After completion of the DOV 102, 677 treat-
ment for binge alcohol drinking and a 7-day washout
period, the 35 mice that participated in the alcohol study
were then randomly divided into five (n = 7) dosage groups
(vehicle, 12.5, 25, 50 and 75 mg/kg) and retrained using
sucrose.

Forty-two mice comprising 15 females of the 35th
generation HAP2 line, 12 females of the 37th generation
HAP2 line and 15 males of the 14th generation HAP3
line were tested using 3-PBC. Mice were then randomly
divided into seven (n = 6) dosage groups (vehicle, 30, 60,
80, 100, 200 and 300 mg/kg). After completion of the
3-PBC treatment for binge alcohol drinking and a 10-day
washout period, 35 of the mice that participated in the
alcohol study were randomly divided into six (n = 7)
sucrose dosage groups (vehicle, 60, 80, 100, 200 and
300 mg/kg) and retrained using sucrose.

Statistical analysis

Given the number of male and female mice in the DOV
102, 677 and 3-PBC treatment groups, responding was
initially analyzed using a mixed analysis of variance
(ANOVA) for sex × dose (2 × 4) collapsed over generation.
However, because no sex or interaction effects were seen,
data were reanalyzed using a univariate ANOVA for only
dose. Thus, data obtained using amitifadine, DOV 102,
677 and 3-PBC were analyzed by separate univariate
ANOVAs for binge alcohol or sucrose drinking followed
by Dunnett’s post hoc tests. BAC and responding were
analyzed by Pearson correlation and repeated measures
ANOVAs. The dissimilar composition of male/female
mice selected to receive amitifadine in experiment 1 was
due to the availability of mice at the time the experiment
was being conducted, many of whom were obtained from
a moderately large study evaluating affect-related
behaviors (see Can et al. 2012) at one of the researchers’
institutions.

Effects of amitifadine on locomotor activity

Amitifadine effects on locomotor activity were evaluated
using mice randomly selected from the three binge sucrose
experiments (see Supporting Information Fig. S1).

Experiment 2: effects of amitifadine and DOV 102, 677
on heavy (free-choice) drinking

Subjects

Thirty-six male and female HAP1 mice from the 44th
generation were tested using amitifadine and a separate

cohort of 36 male and female HAP1 mice from the 49th
generation were tested using DOV 102, 677. Lights were
on from 8:00 pm to 8:00 am, and drinking was measured
during the dark part of the cycle using red illumination.
Mice had ad-lib access to food and water. Procedures were
approved by the Institutional Animal Care and Use Com-
mittee of Indiana University-Purdue University Indian-
apolis, and were conducted in strict adherence with the
National Institutes of Health Guide for the Care and Use of
Laboratory Animals at all institutions.

Compounds

Amitifadine was dissolved in isotonic saline to concentra-
tions of 0.8–2.5 mg/ml. 3-PBC was first dissolved in
0.1 ml dimethyl sulfoxide (DMSO) and then brought to
concentrations of 0.4–1.2 mg/ml in 1% DMSO/saline
vehicle. DOV 102, 677 was dissolved in saline to concen-
trations of 1.5, 3.0 and 4.0 mg/ml. Injection volumes of
all agents were 10 ml/kg administered i.p.

Procedural summary

Prior to administration of compounds, mice were given
free-choice access to 10% alcohol for 3 weeks. Intakes
were read and bottles side switched every other day.
During drug testing, alcohol drinking was measured in
the home cage beginning at the start of the dark part of
the cycle. Drugs were given 30 minutes prior to measur-
ing drinking. Intakes were measured directly on the cage
to ±0.05 ml every 2 hours from 8:00 am to 2:00 pm using
graduated sipper tubes. A single dose of amitifadine
(0–25 mg/kg) was given on Tuesday and Thursday, while
each dose of DOV 102, 677 (0–40 mg/kg) was given to
all subjects in a Latin square design on Mondays and
Thursdays.

Statistical analysis

Daily bihourly and overall drinking data were analyzed
by mixed ANOVAs for dose × time × sex (4 × 4 × 2) to
examine the effects of amitifadine on g/kg alcohol and
ml/kg water drinking. Dose × sex (4 × 2) repeated meas-
ures ANOVAs were used to analyze DOV 102, 677 drink-
ing on g/kg alcohol and ml/kg water drinking due to the
Latin square design. A repeated measures ANOVA of the
bihourly data examined the changes in these variables
with time for each compound. Dunnett’s post hoc tests
were performed to assess individual dose–response effects
in comparison to saline control in amitifadine testing,
and planned pairwise comparisons were used in DOV
102, 677 testing. All analyses for experiments 3 and 4
were performed using SPSS version 18 (IBM, Chicago, IL,
USA).
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Experiment 3: effects of amitifadine, DOV 102, 677,
and 3-PBC on DD

Subjects

Forty-eight male and female HAP2 mice from 39th
generation were tested using all three compounds.
Amitifadine study required an additional 49 male and
female HAP2 mice from the 37th generation following
the observation of a trend toward an effect after the first
cohort. Half of these mice had previously received
alcohol access and were counterbalanced considering
this factor. All mice were counterbalanced across sex and
litter for run order and drug treatment and otherwise
handled identically to those in experiment 2.

Compounds

Amitifadine was dissolved in isotonic saline to con-
centrations of 0.4–1.2 mg/ml, while DOV 102, 677 was
used in concentrations of 3.0 and 4.0 mg/ml in saline.
3-PBC was first dissolved in 0.1 ml DMSO and then
brought to concentrations of 1.5–6.0 mg/ml in 1%
DMSO/saline vehicle. Injection volumes were 10 ml/kg
administered i.p.

Procedural summary

Operant boxes consisted of a nose poke light, two levers, a
house light and a descending sipper tube for saccharin
reinforcement (0.032% w/v) (for details, see Oberlin &
Grahame 2009). Boxes were controlled using MedPC
IV software (Med Associates, Georgia, VT, USA). Mice
underwent five stages of behavioral shaping, with the
final, fifth stage serving as 0-second delay testing (Oberlin
& Grahame 2009), serving as a reinforcer magnitude dis-
crimination task prior to introduction of any delay to the
large reward. Immediate reward amount started at 1
second of saccharin access, and was adjusted upward
and downward by 0.1 second based on the mouse’s
choices. Forced trials of the non-selected reward followed
two consecutive identical choices. Average adjusted
amounts of the reward over the last 20 trials of the
session served as the measure of adjusted amount. If
mice failed to complete 20 trials during stages 1–4 of
shaping, or achieve adjusted amounts of 1.6 seconds or
higher on 3 consecutive days during stage 5, they were
excluded from testing. Additionally, a sixth stage with a
10-second delay was performed to acclimate mice to the
10-second delay to the large reward used during drug
testing. To ensure stable responding, mice that failed to
achieve adjusted amounts of 0.6 second or lower on 3
consecutive days were excluded from testing. Use of a
long delay to the large reinforcer ensured an impulsive
baseline of behavior on which to detect any drug-induced
attenuation of impulsivity (Oberlin et al. 2010).

All mice received 2-hour water access in their home
cage at the end of daily testing. Mice received only one
dose of each compound, but all mice received all com-
pounds, except for replication 2 of amitifadine that only
received this compound. Animals were injected immedi-
ately prior to placement in operant boxes and the com-
mencement of DD testing. 3-PBC was first administered
to mice in doses of 0–120 mg/kg, but the 120 mg/kg
group was reduced to a 15 mg/kg dose following the
observation of markedly decreased responding on the
first day of testing. 3-PBC was tested for 4 days, as
the 15 mg/kg group was run on one additional day to
have equal data points for all groups. Amitifadine was
administered in 0–12 mg/kg doses for 4 days during
each replicate. DOV 102, 677 was tested for 4 days at
0–40 mg/kg doses.

Statistical analysis

Adjusted amounts were analyzed using factorial ANOVA
of sex × dose (2 × 4) using SPSS. As no sex or interaction
effects were seen, data were reexamined by collapsing
across sex using a univariate ANOVA for evaluation of
dose. Dunnett’s post hoc tests were performed to assess
individual dose–response effects. The second replicate of
amitifadine testing was analyzed separately to assess any
alcohol pre-exposure effects, then in tandem with the first
to assess effects of replication.

RESULTS

Experiment 1: operant binge drinking and BACs

Amitifadine dose dependently reduced binge alcohol
responding rates, as shown by a significant dose effect
[F(3,18) = 15.284, P < 0.001] (Fig. 1a). In contrast,
sucrose responding was not significantly altered by any of
the doses (Fig. 1b). DOV 102, 677 also dose dependently
reduced responding rates, as shown by a significant dose
effect [F(4,24) = 7.604, P < 0.001] (Fig. 2a). As with
amitifadine, responding maintained by sucrose was not
affected with DOV 102, 677 (Fig. 2b). Similar to the TUIs,
3-PBC also dose dependently reduced binge alcohol
responding [F(6,36) = 27.457, P < 0.001] (Fig. 3a).
However, responding maintained by sucrose was not
affected, P > 0.05 (Fig. 3b).

Compared with BACs (N = 6) taken after the initial
30-minute session, there was a profound increase in BAC
after the final 90-minute session [F(1,5) = 200.13,
P < 0.001] (Fig. 4a). Responding maintained by alcohol
was also markedly increased from the initial 30-minute to
the final 90-minute session [F(1,5) = 63.12, P < 0.001]
(Fig. 4b). To further evaluate the relationship between
BAC and responding, Pearson product correlations were
performed between BACs and level of responding for the
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first 30-minute and total 90-minute sessions. Significant
positive correlations were observed between the BACs
and level of responding for the first 30-minute session
(r = 0.849, P < 0.03), and the total 90-minute session
(r = 0.774, P < 0.05).

Supporting Information Fig. S1 illustrates the effects
of oral amitifadine on horizontal activity (A) and stereo-
typy (B) 30 minutes prior to exposure in the open field.
Amitifadine was without effect on either type of activity.

Experiment 2: heavy (free-choice) drinking

Over the course of 12 hours of drinking, amitifadine dose
dependently reduced alcohol consumption, as shown by
a main effect of dose [F(3,28) = 25.95, P < 0.001], with
no effect of sex and/or interaction (Fig. 5a). Post hoc tests
showed that the 8, 14 and 25 mg/kg doses all decreased
alcohol intake relative to saline (P < 0.01). Effects of
amitifadine were most pronounced early in the dark
cycle, and began to wane over time; a repeated measures
ANOVA showed an hour × dose interaction on g/kg/hour
[F(15,160) = 5.44, P < 0.001], justifying follow-up one-
way ANOVAs at each timepoint, which revealed dose-
dependent effects as indicated by the symbols in Fig. 5b.
Interestingly, as alcohol intake decreased, mice appeared

to compensate by increasing water intake, as demon-
strated by a main effect of dose on ml/kg water intake
[F(3,28) = 11.31, P < 0.001], and Dunnett’s post hoc
tests showing that the 14 and 25 mg/kg doses increased
water intake relative to saline (P < 0.001; Fig. 5c).

Six mice were lost during data collection using DOV
102, 677 to unknown illness (final n = 18). Similar to
amitifadine, DOV 102, 677 decreased alcohol intake as
demonstrated by a dose main effect in a repeated meas-
ures ANOVA on g/kg/day [F(3,51) = 64.208, P < 0.001]
(Fig. 6a). Pairwise comparisons showed that the 15, 30
and 40 mg/kg doses all differed from saline (P < 0.001).
A sex effect was observed [F(1,17) = 6.600 P = 0.020],
consistent with prior data demonstrating that female
mice drink more alcohol, and a dose × sex interaction
was also seen [F(3,51) = 4.456, P = 0.007]; however,
this effect was driven by the higher baseline consumption
of females, as a repeated measures ANOVA run without
the saline dose revealed no interaction effect. Thus, data
were collapsed across sex for additional analyses. Effects
were again most pronounced early in the dark cycle;
a repeated measures ANOVA showed an hour × dose
interaction [F(15,270) = 7.754, P < 0.001], justifying

(a)

(b)

Figure 1 Amitifadine dose response on binge alcohol (10% v/v)
responding with the vehicle and 25–75 mg/kg doses (N = 7 per dose
group) (a), and sucrose (1% w/v) responding with the vehicle and
25–75 mg/kg doses (N = 6 per dose group) (b) in HAP mice. Data
were analyzed by between-group ANOVAs and Dunnett’s post hoc
test. Drinking is measured as lever presses over 90 minutes (three
30-minute sessions), and the data are presented as mean ± SEM.
*P ≤ 0.05, compared with vehicle control

(a)

(b)

Figure 2 DOV 102, 677 dose response on binge alcohol (10% v/v)
responding with the vehicle and 12.5–75 mg/kg doses (N = 7 per
dose group) (a), and sucrose (1% w/v) responding with the vehicle
and 12.5–75 mg/kg doses (N = 7 per dose group) (b) in HAP mice.
Data were analyzed by between-group ANOVAs, and Dunnett’s post
hoc test. Drinking is measured as lever presses over 90 minutes
(three 30-minute sessions), and the data are presented as
mean ± SEM. *P ≤ 0.05, compared with vehicle control
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pairwise comparisons of saline to all doses at all times of
day which revealed dose-dependent effects as indicated by
the symbols in Fig. 6b. Similar to amitifadine, DOV 102,
677 caused increased water intake that appeared to com-
pensate for reduced alcohol consumption. A repeated
measures ANOVA on ml/kg/day showed a main effect of
dose [F(3,51) = 2.990, P = 0.039], and pairwise com-
parisons showed that the 30 and 40 mg/kg doses were
significantly different from saline (P < 0.05; Fig. 6c).

Experiment 3: DD

Three subjects were excluded from the experiment after
stage 4 of shaping due to an inability to complete a suffi-
cient number of trials to generate adjusted amount data.
Additionally, animals that did not complete 20 trials on at
least 2 days of drug testing were excluded, resulting in
the ns listed in the figure captions. 3-PBC did not affect
impulsivity, as shown by no effect of dose on adjusted
amount (P > 0.5) (Fig. 7c). Amitifadine did reduce impul-
sivity, as shown by a main effect of dose on adjusted
amount [F(3,71) = 3.92, P = 0.012]. Dunnett’s post hoc
testing showed that the 8 mg/kg dose increased the
adjusted amount relative to saline, demonstrative of
decreased impulsivity (P ≤ 0.005) (Fig. 7a). Surprisingly,
the 12 mg/kg dose did not differ from saline, suggesting a

non-dose-dependent effect for this compound. In con-
trast, DOV 102, 677 dose dependently decreased impul-
sivity as indicated by increases in the adjusted amount
(Fig. 7b). This was supported by the main effect of dose
[F(2,23) = 6.33, P = 0.006], and post hoc tests showing
higher adjusted amounts in both the 30 and 40 mg/kg
doses compared with the vehicle condition (P < 0.005)
(Fig. 7b). No sex effects or interaction effects were seen.

DISCUSSION

Using an established model of binge alcohol drinking (Liu
et al. 2011; Warnock et al. 2012), the present study dem-
onstrated that the TUIs, amitifadine and DOV 102, 677,
and the GABA-A α1 preferring ligand, 3-PBC, which
exerts agonist effects on some, but antagonist effects at
other GABA receptor subunits (Harvey et al. 2002;
June & Eiler 2007), effectively reduce binge alcohol, but
not binge sucrose drinking in HAP mice. These results
indicate that increased activity in the dopaminergic,
noradrenergic and serotonergic pathways may cause
marked attenuation of binge drinking. In addition, given

(a)

(b)

Figure 3 3-PBC dose response on binge alcohol (10% v/v)
responding with the vehicle, and 30–300 mg/kg doses (N = 6 per
dose group) (a), and sucrose (1% w/v) responding with the vehicle,
and 60–300 mg/kg doses (N = 7 per dose group) (b) in HAP mice.
Data were analyzed by between-group ANOVAs, and Dunnett’s post
hoc test. Drinking is measured as lever presses over 90 minutes
(three 30-minute sessions), and the data are presented as
mean ± SEM. *P ≤ 0.05, compared with vehicle control

(a)

(b)

Figure 4 (a) BAC of HAP2 mice after the first and third 30-minute
operant binge alcohol drinking sessions (N = 6). (b) Number of lever
presses of mice during the first 30-minute session (N = 6) and the
total responding after the entire 90-minute session. Data are pre-
sented as mean ± SEM. Data were analyzed using repeated measures
ANOVA with Dunnett’s post hoc test. Pearson correlations were also
performed. *P < 0.01, compared with first 30-minute session. **Posi-
tive correlation between BAC and responding for first 30-minute
session, P < 0.03. †Positive correlation between BAC and responding
after entire 90-minute session, P < 0.05
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the modulatory actions of 3-PBC (Harvey et al. 2002;
June & Eiler 2007), along with the recent siRNA findings
in P and HAD rats (Liu et al. 2011; Yang et al. 2011), the
findings with 3-PBC provide critical support for the
hypothesis that the GABA-A α1 subunit is important in
the regulation of binge drinking.

Similar to the findings with binge drinking, both TUIs
produced a selective dose-dependent reduction on free-
choice drinking, which was used to emulate heavy drink-
ing. These findings were accompanied by a concomitant
dose-related elevation of water intake. The concomitant
elevation in water intake provides support for the
behavioral specificity of these compounds on alcohol
consumption, consistent with specificity on binge drink-
ing. While we did not assess BACs during free-choice
drinking, intake amounts and patterns in saline-treated
animals were similar to our prior reports where BAC
levels exceeded 100 mg/dl by 2 hours after the onset of
drinking (Matson & Grahame 2011). In the present study,
because mice continuously had access to alcohol, we
were able to accurately measure the duration of action of

these drugs. All DOV 102, 677 doses significantly sup-
pressed alcohol intake for up to 6 hours, while all
amitifadine doses reduced intake for up to 8 hours.
Amitifadine was the most efficacious antagonist of the
two compounds, reducing drinking by 70–100% of
control levels early in the 12-hour period. To our knowl-
edge, no approved AD has produced such potent, pro-
longed and selective suppression on excessive alcohol
drinking. Given the microdialysis time course for the
three monoamines following administration of the two
agents (approximately 4 hours) (Popik et al. 2006;
Golembiowska, Kowalska & Bymaster 2012), the pro-
longed duration of suppression on alcohol drinking for
amitifadine and DOV 102, 677 may suggest the utility of
further evaluation of both TUIs as putative alcohol
antagonists in humans. Furthermore, the compensatory
dose-related elevations in water intake with the TUIs in
the heavy drinking model suggest the absence of toxic
effects.

Consistent with their effects on binge and free-choice
drinking, the two TUIs significantly attenuated cognitive

(a)

(b)

(c)

Figure 5 Effects of amitifadine on ethanol intake (N = 12) (a),
hourly alcohol (10% v/v) intake (N = 12) (b), and water intake
(N = 12) (c). Data expressed as mean ± SEM; significance expressed
as compared with saline. *P < 0.05, **P < 0.01, ***P < 0.001

(a)

(b)

(c)

Figure 6 Effects of DOV 102, 677 on ethanol intake (N = 12)
(a), hourly alcohol (10 % v/v) intake (N = 12) (b), and water intake
(N = 12) (c). Data expressed as mean ± SEM; significance expressed
as compared with saline. *P < 0.05, **P < 0.01, ***P < 0.001
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impulsivity. However, while the effective dose response
profiles for impulsivity, free-choice and binge drinking
were relatively similar for DOV 102, 677, a different
profile emerged for amitifadine. Specifically, the lowest
effective amitifadine dose in reducing impulsivity and
free-choice drinking was 8 mg/kg, while the lowest effec-
tive dose in suppressing binge drinking was 25 mg/kg.
This difference in dose response for amitifadine may in
part be explained by the usage of i.p. dosing in the impul-
sivity and free-choice drinking studies compared with
using oral dosing in the binge studies. It is well docu-
mented that i.p. and oral routes differ significantly with
respect to the absolute magnitude and the time course of
increases in extracellular catecholamines and behavioral
effects. Intraperitoneal injection has been reported to be
twice as potent, as oral in increases in extracellular
catecholamines such as DA, and neurobehavioral effects
(Gerasimov et al. 2000). In addition, it is also well estab-
lished that the quantitatively different response profiles
between oral and i.p. are a function of bioavailability
(Chan et al. 1981). Specifically, the lower bioavailability

for the oral route is presumably due to the slower absorp-
tion from the gastrointestinal tract, and a greater degree
of metabolism. Nevertheless, while more research is
required to clarify the differences in dose response profiles
of amitifadine across behavioral assays and genotypes,
the seminal oral dose–response function that produced
AD-like effects (5–20 mg/kg) (Skolnick 2012) was com-
parable to i.p. doses that produced effectiveness in the
impulsivity and free-choice drinking studies in mice.
Hence, these findings suggest that in some behavioral
assays, comparable potency is observed with amitifadine,
independent of route of drug administration and rodent
used. Interestingly, the dose–response function seen
in our data for DOV 102, 677 on impulsivity, free-
choice and binge drinking was similar across routes of
administration.

Amitifadine is an unbalanced TUI, showing preferen-
tial inhibition to the 5-HT transporter (i.e. SERT, NET
and DAT; 1:2:8) (Skolnick & Basile 2007). Amitifadine
(10 mg/kg) markedly increases extracellular levels of DA,
NE and 5-HT in the prefrontal cortex to 208, 274 and
412%, above baseline 100 minutes after administration,
respectively. Unlike amitifadine, DOV 102, 677 is a bal-
anced inhibitor of DA, NE and 5-HT transporters with
potency close to a 1:1:1 ratio (Popik et al. 2006). DOV
102, 677 (20 mg/kg i.p.) increased extracellular levels of
5-HT and DA in the prefrontal cortex to 280 and 320%,
respectively, above baseline 100 minutes after adminis-
tration (Popik et al. 2006). NE levels increased linearly
to a maximum of 348% at 240 minutes post-dosing.
Thus, relative to amitifadine, DOV 102, 677 is a pre-
ferential DAT inhibitor, and our results are consistent
with dopaminergic agonists that decrease impulsivity
(Sagvolden 2000; Oberlin et al. 2010). Thus, taken
together, while route of administration may be a salient
factor to explain the differential dose response between
the two TUIs, amitifadine’s capacity to modulate both DA
and 5-HT, and the capacity of DOV 102, 677 to primarily
modulate DA may also contribute to the differential dose
response function. Moreover, it is well established that
5-HT regulates the activity of many neurotransmitters,
particularly DA neurons of the mesoaccumbens circuitry
(Fink & Göthert 2007; Dalley & Roiser 2012). Hence,
given the greater activity of 5-HT, along with the i.p.
route, lower amitifadine doses would be needed to attenu-
ate impulsivity and heavy drinking in the present study.

A general consensus in the preclinical and clinical
studies is that a reduction in brain 5-HT appears to be
important for increasing impulsivity (Bevilacqua et al.
2010; Dalley & Roiser 2012). In the present study, the
TUIs may decrease impulsive behavior via increasing
release of DA/NE via serotonergic activity in addition to
their direct effects on the neurotransmitter transporters
(see Skolnick & Basile 2007). Furthermore, increased

(a)

(b)

(c)

Figure 7 Effects of the three pharmacoactive compounds on delay
discounting.Adjusted amounts are listed in seconds; a higher adjusted
amount is representative of decreased impulsivity. [Ns for each
group: (a) 7, 19, 23, 12; (b) 9, 10, 7; (c) 9, 10, 10, 9]. Data expressed
as mean ± SEM; significance expressed as compared with saline.
*P < 0.05, **P < 0.01, ***P < 0.001
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5-HT tone has been associated with a reduced potential
for reinforcement among drugs that increase mono-
aminergic neurotransmission, lessening abuse potential
(Wee, Carroll & Woolverton 2006). The failure of
amitifadine to exert activating effects in the present study
is also consistent with a greater engagement of the 5-HT
transporters relative to DA, suggesting that amitifadine
may be a good candidate for impulsivity reduction
without motor or rewarding side effects (Howell et al.
2007). The lack of motor activating effects is also con-
sistent with a recent preclinical report from others
(Golembiowska et al. 2012) as well as our laboratory
(Warnock et al. 2012).

The inverted U-shaped dose–response curve observed
with amitifadine on impulsivity, however, is worth
noting, and similar effects on cognitive-related behaviors
have been reported in the literature (Baldi & Bucherelli
2005) with agents used to treat impulsivity (Tannock,
Schachar & Logan 1995). Unfortunately, it is not easy to
elucidate the mechanisms on which this effect is based
(see Baldi & Bucherelli 2005). However, in relation to the
present study, it is possible the neuropharmacological
effects related to the descending limb of the dose–
response curve may be related to stereotypy, non-specific
excitation or serotonergic related effects unrelated to
impulsivity. Any, or several of the neuropharmacological
effects noted, may have interfered with the attenuation of
impulsivity.

In contrast to the TUIs, the GABA-A α1 preferring
ligand, 3-PBC, was ineffective in altering cognitive impul-
sivity. The rationale for this is not clear at present;
however, it may reflect the fact that the neural mecha-
nism(s) regulating impulsivity in the HAP mice may be
mediated via monoamines only, while excessive drink-
ing in the HAP mice may be regulated via GABA,
monoamines, as well as other neurotransmitters (see
McBride & Li 1998). Nevertheless, the finding with 3-
PBC in the present study contrasts the report by Murphy
et al. (2012) where the GABA-A receptor antagonist
bicuculline blocked the increase in impulsivity produced
by the agonist muscimol. However, it should be noted that
this study used a five-choice serial reaction time task,
which measures motor impulsivity, unlike the cognitive
impulsivity-based DD assay of the present study. Different
measures of impulsivity may have distinct underlying
neuropharmacological profiles (Dalley & Roiser 2012).

In conclusion, the data of the present study provide
compelling evidence that a pharmacologic association
exits between two modes of excessive drinking (i.e. binge
and heavy drinking) and cognitive impulsivity using two
TUIs, while a dissociation exists using a GABAergic
ligand. These findings suggest that while the neuronal
mechanism(s) that regulate excessive drinking may
directly involve DA, NE, 5-HT and GABAergic activity, the

neuronal mechanism(s) regulating cognitive impulsivity
appear to involve only DA, NE and 5-HT activity. Further-
more, the data from the present and our previous study
(Yang et al. 2012) provide support for the hypothesis that
elevations in 5-HT and DA neurotransmission may be
critical in the prolonged suppression of alcohol drinking,
as the highest TUI doses were effective in the free-choice
model for 6–8 hours. From a clinical perspective, these
findings are important because a ‘single’ TUI dose may
be capable of sustained reduction of heavy drinking in
the absence of untoward effects, increasing efficacy in
human alcoholics (Yang et al. 2012). Finally, given the
safety profile of amitifadine and DOV 102, 677 (Skolnick
2012; Tran et al. 2012), and their proposed low abuse
liability, we hypothesize that both agents would be effec-
tive in treating the co-occurrence of excessive drinking
and impulsivity in humans.
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Synthesis of aza and carbocyclic β-carbolines for
the treatment of alcohol abuse. Regiospecific
solution to the problem of 3,6-disubstituted
β- and aza-β-carboline specificity†

V. V. N. Phani Babu Tiruveedhula,a Kashi Reddy Methuku,a Jeffrey R. Deschampsb

and James M. Cook*a

A novel two step protocol was developed to gain regiospecific access to 3-substituted β- and aza-β-
carbolines, 3-PBC (1), 3-ISOPBC (2), βCCt (3), 6-aza-3-PBC (4) and 6-aza-3-ISOPBC (5). These β-carbolines
(1–3) are potential clinical agents to reduce alcohol self-administration, especially 3-ISOPBC·HCl (2·HCl)

which appears to be a potent anti-alcohol agent active against binge drinking in a rat model of maternally

deprived (MD) rats. The method consists of two consecutive palladium-catalyzed reactions: a Buchwald–

Hartwig amination followed by an intramolecular Heck-type cyclization in high yield.

Introduction

β-Carbolines, aza-β-carbolines and their derivatives are impor-
tant targets in synthetic chemistry.1 In addition, they are
found in a large number of natural products, many of which
demonstrate novel biological activity, especially in regard to
the reduction of alcohol self-administration [binge drinking
(BD)]. This is proposed to be due to the activity at the benzo-
diazepine site of the GABAA receptor.

2 Surprisingly, BD kills six
people a day, most of which are men, and approximately
88 000 people die from alcohol related issues annually making
it the third leading preventable cause of death in the United
States.3 In 2006, this alcohol misuse cost the US government
approximately $223.5 billion dollars.3 BD (Blood-alcohol level
≥0.08 g% in a 2 hour period) is one form of excessive drinking
and because of it, alcohol addiction and dependence remain a
significant public health concern.4 Maternal separation and
early life events can cause profound neurochemical and behav-
ioral alterations in childhood that persist into adulthood,
enhance the risk to develop alcohol use disorders and exces-
sive drinking.5–7 Consequently, the development of clinically
safe and cost effective therapeutic agents to reduce alcohol

addiction and dependence remain essential for the future
treatment of alcoholism.8,9

One influence on alcohol abuse is known to be mediated by
GABAA receptors, the major inhibitory chloride ion gated chan-
nels with γ-aminobutyric acid (GABA) as the endogenous
ligand in the central nervous system. It plays a vital role in
several neuronal disorders including anxiety, epilepsy, insom-
nia, depression, bipolar disorder, schizophrenia, as well as
mild cognitive impairments and Alzheimer’s disease.10–15 The
pentameric structure of the GABAA receptor is made up of 2 α,
2 β and 1 γ subunits, with a higher distribution of the α1-
subunit in the mesolimbic system of the ventral pallidum (VP)
possibly playing an important role in regulating alcohol
abuse.16–20 However, the precise neuromechanisms of regulat-
ing alcohol-seeking behavior remain unknown. In addition to
the ventral pallidum, there is now compelling evidence that
the GABAA receptors within the striatopallidal and extended
amygdala system are involved in the ‘acute’ reinforcing actions
of alcohol.21–23

To evaluate the role of the α1 receptor in regulating alcohol
reinforcement, the orally active β-carbolines 3-propoxy-β-carbo-
line hydrochloride 1·HCl (3-PBC·HCl) and β-carboline-3-carb-
oxylate-tert-butyl ester 3 (βCCt), the mixed benzodiazepine
(BDZ) agonist-antagonists with binding selectivity at the α1 Bz/
GABAA receptor were developed (see Fig. 1).18,24,25Behavioral
studies in several species (e.g., rats, mice, primates) show that
these ligands were BDZ antagonists, at the α1 Bz/GABAA

subtype exhibiting competitive binding-site interactions with
BDZ agonists over a broad range of doses.18,24,26 In studies
which involved the α1 subtype, they were shown to selectively
reduce alcohol-motivated behaviors and more importantly,

†Electronic supplementary information (ESI) available: Copies of spectra and
crystallographic information files in CIF format. CCDC 1040831–1040833 and
1044936. For ESI and crystallographic data in CIF or other electronic format see
DOI: 10.1039/c5ob01572c

aDepartment of Chemistry and Biochemistry, University of Wisconsin-Milwaukee,

Milwaukee, WI 53201, USA. E-mail: capncook@uwm.edu
bCenter for Bimolecular Science and Engineering, Naval Research Laboratory,

Code 6930, Washington, D. C. 20375, USA

This journal is © The Royal Society of Chemistry 2015 Org. Biomol. Chem., 2015, 13, 10705–10715 | 10705455

www.rsc.org/obc
http://crossmark.crossref.org/dialog/?doi=10.1039/c5ob01572c&domain=pdf&date_stamp=2015-10-22


www.manaraa.com

3-PBC·HCl significantly reduced alcohol self-administration
and reduced craving in baboons.26 β-Carbolines 1·HCl and 3
displayed mixed weak agonist-antagonist profiles in vivo in
alcohol preferring (P) and high alcohol drinking (HAD)
rats.18,26–28 Therefore, in addition to their use to study the
molecular basis of alcohol reinforcement, α1 Bz β-carboline
ligands which display mixed pharmacological antagonist-
agonist activity in alcohol P and HAD rats may be capable of
reducing alcohol intake while eliminating or greatly reducing
the anxiety associated with habitual alcohol, abstinence or
detoxification.18,28–30 Consequently, these types of ligands may
be ideal clinical agents for the treatment of alcohol dependent
individuals.

Results and discussion

Previously, the β-carbolines 1 and 3 have been synthesized
from DL-tryptophan. The overall yield of 1 (via 6 steps) as
reported previously was 8%, while the combined yield of 3 (5
steps) was 35%. A few key steps occurred in low yields which
was something of which we sought to improve on31–34 in a con-
tinued effort to find more potent subtype selective ligands for
GABAA receptors. This interest resulted in a short and concise
synthesis of 1 and 3. In 2011, a palladium catalyzed two-step
protocol for the synthesis of 1, and 3 as well as analogs of 1
was reported.35 In the search for a more potent subtype selec-

tive ligand for the GABAA receptor, with the knowledge that
many 3-substituted β-carbolines and more water soluble aza-
β-carbolines might exhibit greater subtype selectivity at α1β2/3γ2
BZR/GABAergic receptors,31–33,36–38 the ligands 3-ISOPBC (2),
6-aza-3-PBC (4), and 6-aza-3-ISOPBC (5) were designed (see
Fig. 1) and synthesized using a two-step protocol (Scheme 1).

As shown in Scheme 1, bromopyridines 6a–c 39,40 were
reacted with anilines 4a–b in toluene at 100–140 °C in the
presence of 5 mol% Pd(OAc)2 and 7.5 mol% X-Phos to obtain
the corresponding diarlyamines 7a–e in moderate to good
yields. Unfortunately, the intramolecular Heck cyclization
[Pd(OAc)2, (t-Bu)3·HBF4, K2CO3, DMA, 120 °C] of 7a–e afforded
both the β-carbolines 1–5 (individually) and their regioiso-
meric δ-carbolines 9a–e, respectively. Carbolines 2, 3, 9a, and
9d were subjected to X-ray crystallographic analysis (see Fig. 2,
Scheme 4, and the ESI†) to confirm the regiochemistry.
Although this protocol permitted synthesis of β-carbolines on
gram scale for in vivo studies, occasionally the first step in the
Buckwald–Hartwig coupling failed to give complete conversion
into the carboline. This complicated purification for the diaryl-
amine was difficult to purify via column chromatography
because the diarylamine and one of the starting anilines had
almost identical Rf values. Furthermore, in the case of the
water soluble aza-β-carboline the yields (51%) were very poor
and importantly, since the second step was not regiospecific,
this required careful purification to remove the unwanted
δ-carboline present in 30 to 62.5% yield (Scheme 1). Interest-

Fig. 1 Structures of 3-PBC (1), 3-ISOPBC (2), βCCt (3), 6-aza-3-PBC (4) and 6-aza-3-ISOPBC (5).

Scheme 1 Synthesis of substituted carboline analogues. Reagents and conditions: (a) Pd(OAc)2, X-Phos, Cs2CO3, toluene, 100–140 °C, 15–24 h
(b) Pd(OAc)2, (t-Bu)3P·HBF4, K2CO3, DMA, 120 °C, 16 h.
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ingly, the in vivo results (unpublished) for 3-isopropoxy-
β-carboline hydrochloride 2·HCl (3-ISOPBC·HCl) carried out in
maternally deprived rats for binge drinking decreased dramati-
cally this self-administration compared to 1·HCl without
affecting the overall activity of the rats (i.e. no sedation). This
important finding led to the interest in a regiospecific syn-
thesis of 3-ISOPBC (2) on large scale.

The revised synthetic strategy for the regiospecific synthesis
of 2 began with the protection of the intermediate amine 7b
(Na–H) with bulkier groups such as tert-butyloxycarbonyl (Boc)
10 or a fluorenylmethylenoxy group (Fmoc) 11, which might
block the formation of the PdII π-complex that is required to
obtain the undesired regioisomeric δ-carboline. The Boc pro-
tected amine 10 was easily accessible by treating the amine 7b
with di-tert-butyl dicarbonate (Boc)2O and 4-(dimethylamino)-
pyridine (DMAP) in good yield (85%). The Fmoc protected
amine 11 was synthesized under solvent free conditions by
reaction of the amine 7b and Fmoc-Cl by microwave

irradiation at 80 °C in moderate yield (65%, Scheme 2).41 Once
protected, diarylamines 10 and 11 were subjected to a palla-
dium catalyzed Heck-type cyclization using similar conditions
to those from above. Unfortunately, both reactions afforded
the deprotected regioisomers 3-ISOPBC (2) and δ-isomer 9b in
approximately the same 2 : 1 ratio, as compared to cyclization
with the previously unprotected diarylamine 7b (see Scheme 1
above). It was felt that deprotection of the carbamate occurred
once the indole ring had formed (Scheme 2) which provided
the better indole leaving group. To test the thermal stability of
the carbamate starting materials, diarylamines 10 and 11 were
heated at 120 °C in DMA; they were stable to these conditions.
In addition, the cyclization with PdCl2(PPh3)2 as a palladium
source was also attempted using standard Heck-type reaction
conditions with a milder base (NaOAc), but this failed to give
the cyclized product. We also explored the reaction by varying
the water content using NaOAc·3H2O as a base; however, there
was no cyclization (Scheme 2).

Fig. 2 ORTEP view of the crystal structure of substituted carbolines 3, 9a, and 9d (displacement ellipsoids are at the 50% level (β-carboline number-
ing not followed).

Scheme 2 Synthesis of the carbamate protected analogs from intermediate 7b. Reagents and conditions: (a) (Boc)2O, DMAP, THF, rt, 24 h; (b)
Fmoc-Cl, 80 °C, microwave, 1 h; (c) Pd(OAc)2, (t-Bu)3P·HBF4, K2CO3, DMA, 120 °C, 16 h; (d) PdCl2(PPh3)2, NaOAc·3H2O, DMA, 120 °C, 14 h; (e)
PdCl2(PPh3)2, NaOAc, DMA, 120 °C, 14 h.
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The second approach rested on the important switch of the
chlorine atom from the benzene ring to the pyridine ring in
amine 7b. Retrosynthetically, it was envisioned that the core
structure of 3,6-disubstituted β-carboline A could be obtained
from diarylamine B via an intramolecular Heck cyclization and
it was anticipated that diarylamine B could arise from a substi-
tuted aniline C and a substituted pyridine derivative D via a
Buchwald–Hartwig amination (Scheme 3).

At this point it was decided to explore the regioselective pal-
ladium catalyzed Buchwald–Hartwig coupling between aniline
and pyridine 14 42 for the synthesis of diarylamine 16 (Table 1).
With the previous history in mind,35 the initial attempt was
made with 5 mol% Pd(OAc)2, 7.5 mol% X-Phos and Cs2CO3

(1.5 equiv.) in toluene at 110 °C which gave only 18% of the
diarylamine 16 with a large excess of unreacted starting
material even after heating for 24 hours (Table 1, entry 1).
However, the catalyst based on the combination of Pd2(dba)3,
Xantphos and Pd(OAc)2, Xantphos with Cs2CO3 in toluene and
dioxane gave the desire product diarylamine 16 in up to 62%
yield (Table 1, entries 2–3). The ligand Xantphos has been
shown to be efficient in cross coupling reactions of C–N bond
formation because of a wider bite angle,43 which facilitates the
reductive elimination. In addition, the excess base may also

play a role in the improvement of the yield.43 In recent years
rapid synthesis with microwave technology has attracted a con-
siderable amount of attention for C–N bond formation.44–46 All
three previous cyclizations were attempted with microwave
irradiation (for 1 hour) in order to decrease the duration of the
reaction time, as well as increase the selectivity under similar
reaction conditions. However, the results were the same except
that in the Xantphos-based ligand systems the cyclizations
were completed in 1 hour. During continuation of the study of
this selective amination, recent reports from Buchwald and co-
workers47 demonstrated air- and moisture-stable palladacyclic
precatalysts, when employed with aryl iodides and heteroaryl-
iodides were attractive substrates in Pd-catalyzed C–N cross-
coupling reactions. This process works by preventing formation
of the stable bridging iodide dimers and also using a solvent
system in which iodide salts were insoluble. These complexes
easily undergo deprotonation and reductive elimination to
generate LPd(0) along with relatively inert indoline (for gene-
ration of 1) or carbazole (for generation of 2 and 3). These con-
ditions also permit the successful coupling of aryl iodides with
amines at ambient temperature.47–50

The first attempt in this modification was to use the Buch-
wald 3rd generation palladacycle precatalyst (BrettPhos Pd G3)

Scheme 3 Retrosynthetic analysis of 3,6-disubstituted β-carbolines.

Table 1 Optimization of conditions for regioselective synthesis of intermediate 16 from 14a

Entry Pd source Ligand Base (equiv.) Solvent Temp (time) Yieldb (%)

1 Pd(OAc)2 X-Phos Cs2CO3 (1.5) Toluene 110 °C (24 h) 18c

2 Pd2(dba)3 Xantphos Cs2CO3 (2) Dioxane 110 °C (6 h) 51
3 Pd(OAc)2 Xantphos Cs2CO3 (4) Toluene 110 °C (6 h) 62
4 BrettPhos Pd G3 BrettPhos Cs2CO3 (1.5) Toluene 110 °C (14 h) 45
5 BrettPhos Pd G3 BrettPhos Cs2CO3 (3) Toluene 110 °C (5 h) 66
6 BrettPhos Pd G3 BrettPhos NaOt-Bu (1.5) Toluene 110 °C (5 h) 52
7 BrettPhos Pd G3 BrettPhos Cs2CO3 (5) Toluene 110 °C (5 h) 0e

8 Pd2(dba)3 Xantphos Cs2CO3 (5) Toluene 110 °C (3 h) 74
9 Pd(OAc)2 rac-BINAP Cs2CO3 (5) Toluene 110 °C (5 h) 80
10 Pd(OAc)2 rac-BINAP K2CO3 (5) Toluene 110 °C (24 h) 22
11 Pd(OAc)2 rac-BINAP Cs2CO3 (5) Toluene 110 °C (5 h) 92d

a 14 (0.1 mmol), aniline (0.12 mmol), Pd (3 mol%), ligand (3 mol%), base, and solvent (1 mL). b Isolated yields. c Pd (5 mol%), ligand (7.5 mol%).
d Aniline (0.1 mmol). e 90% of diaminated product [6-isopropoxy-N3,N4-diphenylpyridine-3,4-diamine] was observed.
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with the BrettPhos ligand in the presence of Cs2CO3 or NaOt-
Bu in toluene at room temperature. This failed to give the
desired product and there was no consumption of starting
material. Following this attempt, the temperature was raised to
reflux, with the addition of 3 equivalents of Cs2CO3 and the
reaction went to completion within 5 hours. However, it only
gave the desired amine 16 in 66% yield (Table 1, entry 5).
When the same experiment was performed using only 1.5
equiv. of Cs2CO3 the process took a longer time to go to com-
pletion with an isolated yield of 45% of the desired amine 16.
This was accompanied by the diaminated product [6-iso-
propoxy-N3,N4-diphenylpyridine-3,4-diamine] in ∼18% yield
(Table 1, entry 4). Unfortunately, when the stronger base NaOt-
Bu was employed comparable results to the above reaction
(Table 1, entry 4) were obtained accompanied by more decom-
posed material [TLC(silica gel; Table 1, entry 6)]. The use of
excess base (Cs2CO3) gave only the unwanted diaminated
product in 90% yield (Table 1, entry 7). It was found the
Pd(OAc)2, rac-BINAP and K2CO3 combination, unfortunately,
did not lead to full conversion even after heating for 24 hours
(Table 1, entry 10). Interestingly, the catalyst system Pd2(dba)3
and Xantphos with a large excess of base [Cs2CO3 (5 equiv.)]
gave 74% yield of 16, whereas the catalyst system Pd(OAc)2, rac-
BINAP under similar reaction conditions yielded 80% (Table 1,
entry 8 and 9) of the desired amine 16. Remarkably, these data
indicated a large excess of mild base was essential to obtain
good yields, as well as selectivity. Furthermore, a rate-limiting
interphase deprotonation of the Pd(II)-amine complex inter-

mediate has occured in the catalytic cycle.51–53 Encouraged by
these promising results, efforts turned toward lowering the
aniline loading from 1.2 equivalents to 1 equivalent for regio-
selectivity. In doing so we achieved selective amination of pyri-
dine 14 with aniline. Interestingly, neither a 4- nor 4,5-
diaminated pyridine product was obtained. Using this catalyst-
base combination in refluxing toluene, the desired cross-coup-
ling proceeded smoothly to provide the desired anilinopyri-
dine 16 in excellent yield (92%, Table 1, entry 11).
Interestingly, the same reaction conditions gave good yields in
the case of the more polar starting 4-amino pyridine
(Scheme 4); however, the temperature was necessarily
increased to 140 °C to increase the solubility of the starting
material, 4-amino pyridine. In contrast, when a polar solvent
such as DMA was employed, the result was either inferior
yields and/or deiodination of pyridine 16, as mentioned above.

Once the diarylamines 15–18 were in hand in good to excel-
lent yields, the previously applied Heck-type conditions
[Pd(OAc)2, (t-Bu)3·HBF4, K2CO3, DMA, 120 °C] were employed
for cyclization. Gratifyingly, this catalyst system gave excellent
yields of 91–92% and 90–92% for β-carbolines 1–2 and aza-
β-carbolines 4–5, respectively (Scheme 4). The switch of the
chlorine position from the benzene ring to the pyridine ring
worked regiospecifically and completely eliminated the corres-
ponding unwanted δ regioisomer. This completely eliminated
the difficult chromatography required to separate β and δ car-
bolines. The 3-ISOPBC 2 has now been prepared on
15–25 gram scale for studies in vivo (Scheme 5) and it is very

Scheme 4 Regiospecific synthesis of β-carbolines (1–2) and aza-β-carbolines (4–5). Reagents and conditions: (a) Pd(OAc)2, rac-BINAP, Cs2CO3,
toluene, 110–140 °C, 5–6 h (b) Pd(OAc)2, (t-Bu)3P·HBF4, K2CO3, DMA, 120 °C, 16 h.

Scheme 5 Large-scale regiospecific synthesis of β-carboline 3-ISOPBC (2). Reagents and conditions: (a) Pd(OAc)2, rac-BINAP, Cs2CO3, toluene,
110 °C, 15 h (b) Pd(OAc)2, (t-Bu)3P·HBF4, K2CO3, DMA, 120 °C, 16 h.
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easy to scale up to 50–100 gram level. Finally, the overall
yield increased from 43% to 84% compared to the previous
syntheses.33,35

Conclusions

In conclusion, a novel two-step regiospecific route to the four
anti-alcohol agents of biological interest, 3-PBC (1), 3-ISOPBC
(2), 6-aza-3-PBC (4) and 6-aza-3-ISOPBC (5), has been develo-
ped. The process provided improved yields when compared to
the earlier reported syntheses.33,35 This two-step protocol con-
sists of the combination of a regioselective Buchwald–Hartwig
amination and an intramolecular Heck-type cyclization. The
first step, regioselective arylamination, was achieved by using
a Pd-BINAP catalytic system in combination with a large
excess of Cs2CO3, while the latter intramolecular Heck-type
cyclization went smoothly with Pd(OAc)2 in combination with
the air-stable monodentate ligand (t-Bu)3·HBF4 and K2CO3.
These conditions permit the presence of base sensitive func-
tional groups in the substrates. Regiospecific synthesis of β-
and aza-β-carbolines was achieved by simply changing the
chlorine position from the benzene ring to the pyridine
derivatives. Importantly, these reactions are capable of scale-
up to multigram quantities and were performed on 25 gram
scale level for in vivo biology. We observed similar results
except in the case of the Buchwald–Hartwig amination step,
where it required an increase of the catalyst loading from 3 to
6 mol% whenever the starting material was not consumed.
This new process reported here provides the material necess-
ary to study alcohol self-administration and reduction thereof
in MD rats and in primates. This regiospecific two-step syn-
thetic protocol increased the overall yield from 43% to 84% in
the case of β-carbolines 1–2 and from 16% to 66% for aza-
β-carbolines 4–5 respectively, and negated the need for a
difficult chromatographic step.

Experimental
General considerations

All reactions were carried out in oven-dried, round-bottom
flasks or in resealable screw-cap test tubes or heavy-wall
pressure vessels under an argon atmosphere. The solvents
were anhydrous unless otherwise stated. Stainless steel syr-
inges were used to transfer air-sensitive liquids. Organic sol-
vents were purified when necessary by standard methods or
purchased from commercial suppliers. Anhydrous solvents of
toluene, dioxane and N,N-dimethylacetamide (DMA) were sub-
jected to the freeze–thaw method to render them oxygen free
to execute the Buckwald–Hartwig coupling and intramolecular
Heck reactions. All chemicals purchased from commercial sup-
pliers were employed as is, unless stated otherwise in regard to
purification. Silica gel (230–400 mesh) for flash chromato-
graphy was utilized to purify the analogues. The 1H and
13C NMR data were obtained on an NMR spectrometer (300 MHz/
500 MHz) instrument with chemical shifts in δ (ppm) reported

relative to TMS. The HRMS were obtained on a LCMS-IT-TOF
mass spectrometer by Dr Mark Wang.

General procedure for the Buchwald–Hartwig coupling
reaction between substituted anilines and substituted
pyridines: representative procedure for the synthesis of
N-(2-chlorophenyl)-6-propoxypyridin-3-amine (7a)

A heavy-wall pressure tube was equipped with a magnetic stir
bar and fitted with a rubber septum. It was then charged with
5-bromo-2-propoxypyridine 6a (1.3 g, 6 mmol), Pd(OAc)2
(67.4 mg, 0.3 mmol), X-Phos (214 mg, 0.45 mmol) and Cs2CO3

(2.34 g, 7.2 mmol). The vessel was evacuated and backfilled
with argon (this process was repeated a total of 3 times). The
2-chloroaniline 4a (0.8 g, 6.3 mmol) and freeze–thawed
toluene (20 mL) was injected into the tube with a degassed
syringe under a positive pressure of argon. The rubber septum
was replaced with a screw-cap by quickly removing the rubber
septum under the flow of argon and the sealed tube was intro-
duced into a pre-heated oil bath at 110 °C. The reaction
mixture was maintained at this temperature for 15 h. At the
end of this time period, the pressure tube was allowed to cool
to rt. The reaction mixture was filtered through a short pad of
celite, and the pad was washed with ethyl acetate (until no
more product could be obtained; ≈100 mL; TLC, silica gel).
The combined organic fractions were washed with water
(100 mL), brine (100 mL), dried (Na2SO4) and concentrated
under reduced pressure. The crude product was purified by
flash column chromatography (silica gel, 20 : 1 hexanes/ethyl
acetate) to afford 7a (0.64 g, 81%) as a pale yellow oil: 1H NMR
(300 MHz, CDCl3) δ 8.04 (d, J = 2.6 Hz, 1H), 7.47 (dd, J = 8.8,
2.8 Hz, 1H), 7.33 (dd, J = 7.9, 1.4 Hz, 1H), 7.12–7.02 (m, 1H),
6.84 (dd, J = 8.2, 1.3 Hz, 1H), 6.74 (dd, J = 11.5, 5.1 Hz, 2H),
5.88 (br, 1H), 4.24 (t, J = 6.7 Hz, 2H), 1.90–1.72 (m, 2H), 1.04
(t, J = 7.4 Hz, 3H); 13C NMR (75 MHz, CDCl3) δ 161.2, 142.1,
141.9, 135.3, 131.0, 129.7, 127.6, 120.1, 119.5, 113.5, 111.4,
67.9, 22.4, 10.6; HRMS (ESI-TOF) (m/z): [M + H]+ calcd for
C14H16ClN2O: 263.0951, found: 263.0958.

N-(2-Chlorophenyl)-6-isopropoxypyridin-3-amine (7b)

Following the general procedure, 5-bromo-2-isopropoxypyridine
6b (0.44 g, 2.0 mmol) with 2-chloroaniline 4a (0.268 g, 2.1 mmol),
Pd(OAc)2 (22.4 mg, 0.1 mmol), X-Phos (71.4 mg, 0.15 mmol), and
Cs2CO3 (0.78 g, 2.4 mmol) were heated to 110 °C in toluene. After
flash chromatography (silica gel, 20 : 1 hexane/ethyl acetate), the
process afforded 7b (0.215 g, 82%) as a pale yellow oil: 1H NMR
(300 MHz, CDCl3) δ 8.06 (d, J = 2.7 Hz, 1H), 7.47 (dd, J = 8.7,
2.8 Hz, 1H), 7.34 (dd, J = 7.9, 1.3 Hz, 1H), 7.13–7.04 (m, 1H), 6.87
(dd, J = 8.2, 1.2 Hz, 1H), 6.81–6.67 (m, 2H), 5.90 (br, 1H),
5.36–5.24 (m, 1H), 1.39 (d, J = 6.2 Hz, 6H); 13C NMR (75 MHz,
CDCl3) δ 160.6, 142.3, 142.0, 135.3, 130.7, 129.6, 127.6, 120.1,
119.5, 113.5, 111.9, 68.2, 22.1; HRMS (ESI-TOF) (m/z): [M + H]+

calcd for C14H16ClN2O: 263.0951, found: 263.0935.

tert-Butyl 5-[(2-chlorophenyl)amino]picolinate (7c)

Following the general procedure, tert-butyl 5-bromopicolinate
6c (5 g, 19.4 mmol) with 2-chloroaniline 4a (2.6 g, 20.3 mmol),
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Pd(OAc)2 (0.22 g, 0.97 mmol), X-Phos (0.69 g, 1.45 mmol), and
Cs2CO3 (7.59 g, 23.3 mmol) was heated to 110 °C in toluene.
After flash chromatography (silica gel, 5 : 1 hexanes/ethyl
acetate), this process afforded 7c (5.02 g, 85%) as an off-white
solid; mp 148–149 °C: 1H NMR (300 MHz, CDCl3) δ 8.54 (d, J =
2.7 Hz, 1H), 8.00 (d, J = 8.6 Hz, 1H), 7.45 (dd, J = 8.1, 1.7 Hz,
2H), 7.39 (dd, J = 8.1, 1.2 Hz, 1H), 7.27–7.20 (m, 1H), 7.02
(td, J = 7.9, 1.4 Hz, 1H), 6.45 (br, 1H), 1.65 (s, 9H); 13C NMR
(75 MHz, CDCl3) δ 163.8, 141.5, 141.3, 139.3, 137.3, 130.3,
127.7, 125.9, 124.6, 123.7, 122.6, 118.8, 81.9, 28.2; HRMS
(ESI-TOF) (m/z): [M + Na]+ calcd for C16H17ClN2O2Na:
327.0876, found: 327.0857.

N-(3-Chloropyridin-4-yl)-6-propoxypyridin-3-amine (7d)

Following the general procedure for 24 h at 140 °C, 5-bromo-2-
propoxypyridine 6a (13.45 g, 62.50 mmol) was heated with
4-amino-3-chloropyridine 4b (8.0 g, 62.5 mmol), Pd(OAc)2
(697 mg, 3.1 mmol), X-Phos (1.46 g, 3.1 mmol) and Cs2CO3

(40.6 g, 125 mmol) in refluxing toluene to yield the crude
diaza material 7d. After flash chromatography (silica gel, 1 : 1
ethyl acetate/hexane), this afforded the pure diaza material 7d
(8.29 g, 51%) as a white solid; mp 71.6–72.6 °C: 1H NMR
(300 MHz, CDCl3): δ 8.35 (s, 1H), 8.10–8.07 (m, 2H), 7.48 (dd,
J = 6.0, 3.0 Hz, 1H), 6.80 (d, J = 6.0 Hz, 1H), 6.60 (d, J = 6.0 Hz,
1H), δ 6.45 (br, 1H), 4.25 (t, J = 6.9, Hz, 2H), 1.87–1.75 (m, 2H),
1.03 (t, J = 7.2, Hz, 3H); 13C NMR (75 MHz, CDCl3): δ 162.3,
148.8, 148.3, 148.2, 144.0, 136.56, 128.2, 117.1, 111.7, 106.9,
68.0, 22.3, 10.5; HRMS (ESI-TOF) (m/z): [M + H]+ calcd for
C13H15ClN3O 264.0904, found 264.0893.

N-(3-Chloropyridin-4-yl)-6-isopropoxypyridin-3-amine (7e)

Following the general procedure for 24 h at 140 °C, 5-bromo-2-
isopropoxypyridine 6b (8.09 g, 37.20 mmol) was heated with
4-amino-3-chloropyridine 4b (4.74 g, 37.20 mmol), Pd(OAc)2
(419 mg, 1.87 mmol), X-Phos (608 mg, 1.87 mmol), Cs2CO3

(15.25 g, 46.80 mmol) in refluxing toluene to afford a crude
solid which was purified by flash chromatography (silica gel,
1 : 1 ethyl acetate/hexane) to furnish a white solid 7e (5.20 g,
52.4%); mp 76–78 °C: 1H NMR (300 MHz, CDCl3): δ 8.35
(s, 1H), 8.10–8.06 (m, 2H), 7.46 (dd, J = 6.0, 3.0 Hz, 1H), 6.74
(d, J = 6.0 Hz, 1H), 6.61 (d, J = 6.0 Hz, 1H), 6.42 (br s, 1H),
5.35–5.23 (m, 1H), 1.36 (d, J = 6.0 Hz, 6H); 13C NMR (75 MHz,
CDCl3): δ 161.7, 148.7, 148.3, 144.0, 136.5, 127.9, 117.0, 112.2,
106.9, 68.5, 22.0; HRMS (ESI-TOF) (m/z): [M + H]+ calcd for
C13H15ClN3O 264.0904, found 264.0909.

General procedure for the intramolecular Heck cyclization:
representative procedure for the synthesis of 3-propoxy-9H-
pyrido[3,4-b]indole (3-PBC, 1) and 2-propoxy-5H-pyrido[3,2-b]-
indole (9a)

A heavy-wall pressure tube was equipped with a magnetic
stir bar and fitted with a rubber septum and loaded with
N-(2-chlorophenyl)-6-propoxypyridin-3-amine 7a (526 mg,
2.0 mmol), Pd(OAc)2 (44.8 mg, 0.2 mmol), (t-Bu)3P·HBF4
(116 mg, 0.4 mmol) and K2CO3 (552 mg, 4.0 mmol). The vessel
was evacuated and backfilled with argon (this process was

repeated a total of 3 times) and degassed DMA (8 mL) was
injected into the tube with a degassed syringe under a positive
pressure of argon. The rubber septum was replaced with a
screw-cap by quickly removing the rubber septum under the
flow of argon and the sealed tube was introduced into a pre-
heated oil bath at 120 °C. The reaction mixture was main-
tained at this temperature for 16 h. At the end of this period,
the reaction mixture was allowed to cool to rt. The dark brown
mixture which resulted was then passed through a short pad
of celite. The celite pad was further washed with ethyl acetate
(150 mL) until no more product (TLC; silica gel) was detected
in the eluent. The combined filtrate was washed with water
(100 mL × 3), brine (100 mL), dried (Na2SO4) and concentrated
under reduced pressure. The crude product was purified by
flash column chromatography (silica gel, 5 : 1 hexanes/ethyl
acetate) to afford 3-PBC (1) (235 mg, 52%) as an off white
solid. mp 120.5–121.5 °C (lit.35 mp 119.3–120.5 °C): 1, 1H NMR
(300 MHz, CDCl3) δ 8.66 (br, 1H), 8.42 (s, 1H), 8.05 (d, J =
7.9 Hz, 1H), 7.50 (t, J = 7.6 Hz, 1H), 7.45–7.38 (m, 1H), 7.35
(s, 1H), 7.21 (t, J = 7.4 Hz, 1H), 4.28 (t, J = 6.7 Hz, 2H),
1.94–1.78 (m, 2H), 1.06 (t, J = 7.4 Hz, 3H); 13C NMR (75 MHz,
CDCl3) δ 157.9, 142.4, 133.8, 132.7, 128.9, 128.7, 122.0, 121.4,
119.5, 111.5, 99.1, 68.6, 22.7, 10.6; HRMS (ESI-TOF) (m/z):
[M + H]+ calcd for C14H15N2O: 227.1184, found: 227.1174. A
hydrochloride salt of 1 was prepared by the reported method31

to obtain 3-PBC·HCl (1·HCl): yellow solid; mp 194.5–195.5 °C
(lit31 194.0–195.0 °C). The spectral data for this 1·HCl were in
excellent agreement with the reported values (mp, 1H NMR).31

9a (145 mg, 32%) as a white solid; mp 125–126 °C: 1H NMR
(300 MHz, CDCl3) δ 8.28 (t, J = 8.8 Hz, 1H), 8.20 (br, 1H), 7.60
(d, J = 8.7 Hz, 1H), 7.51–7.34 (m, 2H), 7.27 (t, J = 7.3 Hz, 1H),
6.83 (d, J = 8.7 Hz, 1H), 4.46 (t, J = 6.7 Hz, 2H), 1.99–1.80
(m, 2H), 1.10 (t, J = 7.4 Hz, 3H); 13C NMR (75 MHz, CDCl3)
δ 159.5, 140.2, 138.2, 128.4, 126.8, 122.3, 121.6, 120.6, 119.7,
111.3, 108.6, 67.9, 22.6, 10.7; HRMS (ESI-TOF) (m/z): [M + H]+

calcd for C14H15N2O: 227.1184, found: 227.1180.

3-Isopropoxy-9H-pyrido[3,4-b]indole (3-ISOPBC, 2) and
3-isopropoxy-5H-pyrido[3,2-b]indole (9b)

Following the general procedure for the intramolecular Heck
cyclization, 7b (526 mg, 2.0 mmol) was heated with Pd(OAc)2
(45 mg, 0.2 mmol), (t-Bu)3P·HBF4 (116 mg, 0.4 mmol) and
K2CO3 (552 mg, 4.0 mmol) in DMA at 120 °C to afford a
mixture of regioisomers 2 and 9b. After flash chromatography
(silica gel, 5 : 1 hexanes/ethyl acetate), this procedure yielded
pure 3-ISOPBC (2) and the byproduct 9b.

2 (239.5 mg, 53%): off-white solid; mp 134–136 °C: 1H NMR
(300 MHz, CDCl3) δ 8.41 (s, 1H), 8.19 (br, 1H), 8.04 (d, J =
7.8 Hz, 1H), 7.50 (t, J = 7.6 Hz, 1H), 7.40 (d, J = 8.1 Hz, 1H),
7.34 (s, 1H), 7.21 (t, J = 7.4 Hz, 1H), 5.35–5.23 (m, 1H), 1.40 (d,
J = 6.1 Hz, 6H); 13C NMR (75 MHz, CDCl3) δ 157.4, 142.1,
133.7, 132.5, 128.9, 128.8, 122.0, 121.6, 119.5, 111.3, 100.5,
68.6, 22.3; HRMS (ESI-TOF) (m/z): [M + H]+ calcd for
C14H15N2O: 227.1184, found: 227.1184. A hydrochloride salt
of 2 was prepared by the reported method37 to obtain
3-ISOPBC·HCl (2·HCl): light greenish yellow solid; mp

Organic & Biomolecular Chemistry Paper

This journal is © The Royal Society of Chemistry 2015 Org. Biomol. Chem., 2015, 13, 10705–10715 | 10711461



www.manaraa.com

169–171 °C (lit.37 168–172 °C). The data for this compound
matched in all respects (1H NMR, mp) with that reported in
the literature.37

9b (163.1 mg, 36%): light brown solid; mp 110.4–111.5 °C:
1H NMR (300 MHz, CDCl3) δ 8.27 (d, J = 7.8 Hz, 1H), 7.99
(br, 1H), 7.67 (d, J = 8.7 Hz, 1H), 7.49–7.45 (m, 2H), 7.30–7.25
(m, 1H), 6.79 (d, J = 8.7 Hz, 1H), 5.60–5.48 (m, 1H), 1.45 (d, J =
6.1 Hz, 6H); 13C NMR (75 MHz, CDCl3) δ 158.9, 140.1, 138.4,
128.1, 126.7, 122.6, 121.3, 120.5, 119.7, 111.1, 109.4, 67.9, 22.2;
HRMS (ESI-TOF) (m/z): [M + H]+ calcd for C14H15N2O:
227.1184, found: 227.1185.

tert-Butyl 9H-pyrido[3,4-b]indole-3-carboxylate (βCCt; 3) and
tert-butyl 5H-pyrido[3,2-b]indole-3-carboxylate (9c)

Following the general procedure for the intramolecular Heck
cyclization, 7c (2 g, 16.4 mmol), was heated with Pd(OAc)2
(147 mg, 0.656 mmol), (t-Bu)3P·HBF4 (380 mg, 0.4 mmol) and
K2CO3 (1.8 g, 13.12 mmol) in DMA at 120 °C to afford crude 3
and 9c. After flash chromatography (silica gel, 1 : 1 hexanes/
ethyl acetate), this afforded pure βCCt (3) and 9c.

3 (885 mg, 50%), white solid; mp 302.5–304.5 °C (lit33

301–303 °C): 1H NMR (300 MHz, CDCl3) δ 10.35 (br, 1H), 9.23
(s, 1H), 8.86 (s, 1H), 8.25 (d, J = 7.9 Hz, 1H), 7.80 (d, J = 8.3 Hz,
1H), 7.66–7.61 (m, 1H), 7.38 (t, J = 7.5 Hz, 1H), 1.75 (s, 9H);
13C NMR (75 MHz, CD3COCD3) δ 164.9, 141.2, 139.2, 137.7,
133.4, 128.6, 128.1, 121.8, 121.5, 120.3, 116.9, 112.2, 80.1, 27.6;
HRMS (ESI-TOF) (m/z): [M + H]+ calcd for C16H17N2O2:
269.1290, found: 269.1286. The spectral data are in excellent
agreement with the published values.33

9c (531 mg, 30%), fluffy white solid; mp 216.0–218.2 °C:
1H NMR (300 MHz, CDCl3) δ 9.46 (br, 1H), 8.38 (d, J = 7.8 Hz,
1H), 8.18 (d, J = 8.5 Hz, 1H), 7.82 (d, J = 8.5 Hz, 1H), 7.53–7.49
(m, 2H), 7.25–7.23 (m, 1H), 1.67 (s, 9H); 13C NMR (75 MHz,
CDCl3) δ 164.9, 142.4, 141.4, 141.1, 134.7, 128.6, 122.0, 121.9,
121.0, 120.8, 117.4, 111.5, 81.9, 28.2; HRMS (ESI-TOF) (m/z):
[M + H]+ calcd for C16H17N2O2: 269.1290, found: 269.1289.

8-Propoxy-5H-pyrrolo[2,3-c:4,5-c′]dipyridine (6-aza-3-PBC, 4)
and 2-propoxy-5H-pyrrolo[3,2-b:4,5-c′]dipyridine (9d)

Following the general procedure for the intramolecular Heck
cyclization, the diaza compound 7d (3.0 g, 11.30 mmol) was
heated with Pd(OAc)2 (255.0 mg, 1.13 mmol), (t-Bu)3P·HBF4
(657.0 mg, 2.26 mmol) and K2CO3 (3.2 g, 22.60 mmol) in DMA
at 120 °C to afford crude 4 and 9d. After flash chromatography
(silica gel, 1 : 24 methanol/dichloromethane) this process
afforded the pure regioisomers 6-aza-3-PBC (4) and 9d as
white solids.

4 (820 mg, 31.8%): mp 166–168 °C: 1H NMR (300 MHz,
(CD3)2SO): δ 12. 13 (br, 1H), 9.51 (s, 1H), 8.57 (br, 2H), 7.68
(s, 1H), 7.61 (d, J = 5.7 Hz, 1H), 4.26 (t, J = 6.0, Hz, 2H),
1.83–1.71 (m, 2H), 1.01 (t, J = 6.0, Hz, 3H); 13C NMR (75 MHz,
(CD3)2SO): δ 158.4, 147.0, 144.5, 143.4, 133.0, 131.5, 130.7,
118.2, 108.1, 100.4, 68.0, 22.5, 10.9; HRMS (ESI-TOF) (m/z):
[M + H]+ calcd for C13H14N3O: 228.1137, found: 228.1144.

9d (1.62 g, 62.5%); mp 192–194 °C: 1H NMR (300 MHz,
(CD3)2SO): 11.70 (s, 1H), 9.25 (s, 1H), 8.43 (d, J = 6.0 Hz, 1H),

7.94 (d, J = 9.0 Hz, 1H), 7.51 (d, J = 6.0 Hz, 1H), 6.93 (d, J =
9.0 Hz, 1H), 4.36 (t, J = 6.0 Hz, 2H), 1.84–1.77 (m, 2H), 1.03
(t, J = 6.0 Hz, 3H); 13C NMR (75 MHz, (CD3)2SO): δ 159.7, 145.2,
143.8, 142.8, 136.0, 128.8, 123.5, 118.5, 110.2, 107.6, 67.4, 22.4,
11.0; HRMS (ESI-TOF) (m/z): [M + H]+ calcd for C13H14N3O:
228.1137, found: 228.1140.

8-Isopropoxy-5H-pyrrolo[2,3-c:4,5-c′]dipyridine (6-aza-
3-ISOPBC, 5) and 2-isopropoxy-5H-pyrrolo[3,2-b:4,5-c′]-
dipyridine (9e)

Following the general procedure for the intramolecular Heck
cyclization, pyridine 7e (3.0 g, 11.30 mmol) was heated with Pd
(OAc)2 (255.0 mg, 1.13 mmol), (t-Bu)3P·HBF4 (657.0 mg,
2.26 mmol) and K2CO3 (3.2 g, 22.60 mmol) in DMA at 120 °C
to afford crude 5 and 9e. After flash chromatography (silica
gel, 1 : 24 methanol/dichloromethane) this afforded the regioi-
someric 6-aza-3-ISOPBC (5) and 9e as white solids.

5 (800 mg, 31.0%); mp 180.2–183.2 °C: 1H NMR (300 MHz,
(CD3)2SO): δ 11.66 (s, 1H), 9.37 (s, 1H), 8.51 (s, 1H), 8.48 (d, J =
6.0 Hz, 1H), 7.56 (s, 1H), 7.46 (d, J = 6.0 Hz, 1H), 5.32–5.20
(m, 1H), 1.32 (d, J = 6.0 Hz, 6H); 13C NMR (125 MHz,
(CD3)2SO): δ 157.4, 147.3, 146.3, 145.4, 132.7, 131.6, 130.1,
118.2, 107.4, 100.0, 68.0, 22.6; HRMS (ESI-TOF) (m/z): [M + H]+

calcd for C13H14N3O: 228.1137, found: 228.1150.
9e (1.6 g, 62.3%); mp 207.4–208.6 °C: 1H NMR (500 MHz,

(CD3)2SO): δ 11.85 (s, 1H), 9.28 (s, 1H), 8.44 (d, J = 3.0 Hz, 1H),
7.94 (d, J = 6.0 Hz, 1H), 7.55 (d, J = 3.0 Hz, 1H), 6.89 (d, J =
6.0 Hz, 1H), 5.49–5.41 (m, 1H), 1.36 (d, J = 3.0 Hz, 6H);
13C NMR (125 MHz, (CD3)2SO): δ 159.2, 144.2, 144.0, 142.1,
136.0, 128.9, 123.7, 111.1, 107.8, 67.8, 22.4; HRMS (ESI-TOF)
(m/z): [M + H]+ calcd for C13H14N3O: 228.1137, found:
228.1140.

tert-Butyl (2-chlorophenyl)(6-isopropoxypyridin-3-yl)-
carbamate (10)

To the amine 7b (275 mg, 1.05 mmol) in THF (6 mL) was
added the di-tert-butyl dicarbonate (320 mg, 1.46 mmol) and
4-(dimethylamino)pyridine (DMAP) (51.1 mg, 0.42 mmol) and
this mixture was stirred at rt for 24 h. The organic solvent was
removed under reduced pressure and the crude product which
resulted was purified by flash column chromatography (silica
gel, 1 : 9 ethylacetate/hexane) to give the pure BOC protected
amine 10 (323 mg, 85%).

1H NMR (300 MHz, CDCl3) δ 8.03 (d, J = 2.6 Hz, 1H), 7.60
(s, 1H), 7.44 (dd, J = 8.1, 5.9 Hz, 1H), 7.32–7.20 (m, 3H), 6.62
(d, J = 8.9 Hz, 1H), 5.30–5.16 (m, 1H), 1.43 (s, 9H), 1.31 (d, J =
6.2 Hz, 6H); 13C NMR (75 MHz, CDCl3) δ 160.9, 153.3, 143.9,
139.8, 136.7, 133.3, 132.2, 130.4, 130.3, 128.6, 127.7, 111.1,
81.6, 68.2, 28.1; HRMS (ESI-TOF) (m/z): [M + H]+ calcd for
C19H24ClN2O3: 363.1475, found: 363.1469.

(9H-Fluoren-9-yl)methyl (2-chlorophenyl)(6-isopropoxypyridin-
3-yl)carbamate (11)

The microwave tube was loaded with amine 7b (300 mg,
1.14 mmol) and Fmoc chloride (325 mg, 1.25 mmol). The tube
was sealed and placed into a microwave apparatus (with a
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power of 100 W) at 80 °C for 1 h with stirring. At the end
of this period, the reaction was directly purified, without
quenching, by flash column chromatography(silica gel, 1 : 4
ethylacetate/hexane) to give pure Fmoc protected pyridine 11
(360 mg, 65%).

1H NMR (300 MHz, CDCl3) δ 8.08 (d, J = 2.7 Hz, 1H), 7.70
(d, J = 7.6 Hz, 3H), 7.50 (d, J = 3.8 Hz, 1H), 7.42–7.28 (m, 5H),
7.20–7.06 (m, 4H), 6.64 (d, J = 8.5 Hz, 1H), 5.33–5.15 (m, 1H),
4.49–4.41 (m, 2H), 4.16–4.09 (m, 1H), 1.34 (d, J = 6.1 Hz, 6H);
13C NMR (75 MHz, CDCl3) δ 154.3, 143.6, 141.3, 139.2, 139.1,
131.6, 130.60, 130.5, 129.2, 127.9, 127.7, 126.9, 125.0, 119.9,
111.4, 68.4, 68.2, 46.9, 22.1; HRMS (ESI-TOF) (m/z): [M + Na]+

calcd for C29H25ClN2O3Na: 507.1451, found: 507.1448.

4-Chloro-6-isopropoxy-N-phenylpyridin-3-amine (16)

A heavy-wall pressure tube was equipped with a magnetic
stir bar and fitted with a rubber septum that had been
charged with 4-chloro-5-iodo-2-isopropoxypyridine 14 (75 mg,
0.252 mmol), aniline (27.6 µL, 0.256 mmol) and Cs2CO3

(410 mg, 1.26 mmol). The vessel was evacuated and backfilled
with argon (this process was repeated a total of 3 times) and
degassed toluene (1 mL) was injected into the tube with a
degassed syringe under a positive pressure of argon. In
another round bottom flask fitted with a rubber septum,
Pd(OAc)2 (1.7 mg, 0.0076 mmol) and rac-BINAP (4.7 mg,
0.0076 mmol) was charged. This flask was evacuated and back-
filled with argon (this process was repeated a total of 3 times)
and then degassed toluene (0.5 mL) was added under a posi-
tive pressure of argon. This mixture was stirred for 10 min and
then the mixture which resulted was added to the above
pressure tube. The rubber septum was replaced with a screw-
cap by quickly removing the rubber septum under the flow of
argon and the sealed tube was introduced into a pre-heated oil
bath at 110 °C. The reaction mixture was maintained at this
temperature for 5 h. At the end of this time period the pressure
tube was allowed to cool to rt. The reaction mixture was fil-
tered through a short pad of celite, and the pad was washed
with ethyl acetate (until no more product could be obtained;
≈50 mL). The combined organic eluents were washed with
water (50 mL), brine (50 mL), dried (Na2SO4) and concentrated
under reduced pressure. The crude product was purified by
flash column chromatography (silica gel, 20 : 1 hexanes/ethyl
acetate) to afford only 16 (61 mg, 92%) as a pale yellow oil.

1H NMR (300 MHz, CDCl3) δ 8.18 (s, 1H), 7.28 (t, J = 7.9 Hz,
2H), 6.98–6.92 (m, 3H), 6.83 (s, 1H), 5.52 (s, 1H), 5.29–5.17
(m, 1H), 1.36 (d, J = 6.2 Hz, 6H); 13C NMR (75 MHz, CDCl3)
δ 159.2, 143.5, 139.1, 138.2, 130.4, 129.5, 121.1, 116.8, 111.9,
68.8, 22.1; HRMS (ESI-TOF) (m/z): [M + H]+ calcd for
C14H16ClN2O: 263.0951, found: 263.0958.

4-Chloro-6-propoxy-N-phenylpyridin-3-amine (15)

Following the above general procedure for 5 h at 110 °C,
4-chloro-5-iodo-2-propoxypyridine 13 (75 mg, 0.252 mmol),
aniline (27.6 µL, 0.256 mmol), Pd(OAc)2 (1.7 mg,
0.0076 mmol), rac-BINAP (4.7 mg, 0.0076 mmol) and Cs2CO3

(410 mg, 1.26 mmol) were heated in toluene at reflux to afford

a crude liquid which was purified by flash chromatography
(silica gel, 20 : 1 hexanes/ethyl acetate) to furnish a pale yellow
oil 15 (60.33 mg, 91%).

1H NMR (300 MHz, CDCl3) δ 8.20 (s, 1H), 7.28 (t, J = 7.9 Hz,
2H), 6.98–6.93 (m, 3H), 6.89 (s, 1H), 5.57 (s, 1H), 4.26 (t, J =
6.6 Hz, 2H), 1.89–1.77 (m, 2H), 1.06 (t, J = 7.2 Hz, 2H);
13C NMR (75 MHz, CDCl3) δ 159.9, 143.6, 139.3, 138.1, 130.6,
129.5, 121.1, 116.7, 111.4, 68.1, 22.4, 10.5; HRMS (ESI-TOF)
(m/z): [M + H]+ calcd for C14H16ClN2O: 263.0951, found:
263.0946.

4-Chloro-6-propoxy-N-(pyridin-4-yl)pyridine-3-amine (17)

Following the above general procedure for 6 h at 140 °C,
4-chloro-5-iodo-2-propoxypyridine 13 (214 mg, 0.72 mmol),
4-aminopyridine (68.8 mg, 0.73 mmol), Pd(OAc)2 (4.8 mg,
0.0216 mmol) and rac-BINAP (13.4 mg, 0.0216 mmol) as well
as Cs2CO3 (1.17 g, 3.6 mmol) were heated in toluene at reflux
to afford a crude solid which was purified by flash chromato-
graphy (silica gel, ethyl acetate) to furnish a white solid 17
(137 mg, 72%); mp 119–120 °C, 1H NMR (300 MHz, CDCl3):
δ 8.28 (d, J = 4.8 Hz, 2H), 8.19 (s, 1H), 6.92 (s, 1H), 6.65 (d, J =
5.4 Hz, 2H), 6.18 (br, 1H), 4.27 (t, J = 6.6 Hz, 2H), 1.88–1.76
(m, 2H), 1.04 (t, J = 7.5 Hz, 2H); 13C NMR (75 MHz, CDCl3):
δ 162.3, 151.7, 150.0, 144.6, 142.0, 126.9, 111.9, 108.9, 68.4,
22.3, 10.5; HRMS (ESI-TOF) (m/z): [M + H]+ calcd for
C13H15ClN3O 264.0904, found 264.0898.

4-Chloro-6-isopropoxy-N-(pyridin-4-yl)pyridine-3-amine (18)

Following the above general procedure for 6 h at 140 °C,
4-chloro-5-iodo-2-isopropoxypyridine 13 (214 mg, 0.72 mmol),
4-aminopyridine (68.8 mg, 0.73 mmol), Pd(OAc)2 (4.8 mg,
0.0216 mmol) and rac-BINAP (13.4 mg, 0.0216 mmol) as well
as Cs2CO3 (1.17 g, 3.6 mmol) were heated in toluene at reflux
to afford a crude solid which was purified by flash chromato-
graphy (silica gel, ethyl acetate) to furnish a white solid 18
(135 mg, 71%); 1H NMR (300 MHz, CDCl3): δ 8.24 (d, J =
4.2 Hz, 2H), 8.18 (s, 1H), 6.87 (s, 1H), 6.74 (d, J = 5.7 Hz, 2H),
5.36–5.23 (m, 1H), 1.37 (d, J = 6.3 Hz, 6H); 13C NMR (75 MHz,
CDCl3): δ 161.9, 152.4, 148.9, 144.8, 142.1, 126.4, 112.4, 108.9,
69.3, 22.0; HRMS (ESI-TOF) (m/z): [M + H]+ calcd for
C13H15ClN3O 264.0904, found 264.0910.

3-Propoxy-9H-pyrido[3,4-b]indole (3-PBC, 1)

Following the general procedure for the Heck cyclization for
16 h at 120 °C, 4-Chloro-6-propoxy-N-phenylpyridin-3-amine 15
(526 mg, 2.0 mmol), Pd(OAc)2 (44.8 mg, 0.2 mmol),
(t-Bu)3P·HBF4 (116 mg, 0.4 mmol) and K2CO3 (552 mg,
4.0 mmol) were heated to give a solid which was purified by a
wash column (silica gel, 5 : 1 hexanes/ethyl acetate) to yield
3-PBC 1 (416.80 mg, 92%).

3-Isopropoxy-9H-pyrido[3,4-b]indole (3-ISOPBC, 2)

Following the general procedure for the Heck cyclization for
16 h at 120 °C, 4-chloro-6-isopropoxy-N-phenylpyridin-3-amine
16 (526 mg, 2.0 mmol), Pd(OAc)2 (44.8 mg, 0.2 mmol),
(t-Bu)3P·HBF4 (116 mg, 0.4 mmol) and K2CO3 (552 mg,
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4.0 mmol) were heated to give a solid which was purified by a
wash column (silica gel, 5 : 1 hexanes/ethyl acetate) to yield
3-ISOPBC 2 (412.30 mg, 91%).

8-Propoxy-5H-pyrrolo[2,3-c:4,5-c′]dipyridine (6-aza-3-PBC, 4)

Following the general procedure for the Heck cyclization for
16 h at 120 °C, 4-chloro-6-propoxy-N-(pyridin-4-yl)pyridine-
3-amine 17 (125 mg, 0.475 mmol), Pd(OAc)2 (10.7 mg,
0.047 mmol), (t-Bu)3P·HBF4 (27.6 mg, 0.095 mmol) and K2CO3

(131.3 mg, 0.95 mmol) were heated to give a solid which was
purified by a wash column (silica gel, 1 : 24 methanol/dichloro-
methane) to yield 6-aza-3-PBC 4 (97.15 mg, 90%).

8-Isopropoxy-5H-pyrrolo[2,3-c:4,5-c′]dipyridine
(6-aza-3-ISOPBC, 5)

Following the general procedure for the Heck cyclization for
16 h at 120 °C, 4-chloro-6-isopropoxy-N-(pyridin-4-yl)pyridine-
3-amine 18 (125 mg, 0.475 mmol), Pd(OAc)2 (10.7 mg,
0.047 mmol), (t-Bu)3P·HBF4 (27.6 mg, 0.095 mmol) and K2CO3

(131.3 mg, 0.95 mmol) were heated to give a solid which was
purified by a wash column (silica gel, 1 : 24 methanol/dichloro-
methane) to yield 6-aza-3-ISOPBC 5 (99.31 mg, 92%).

Large-scale synthesis of 3-ISOPBC (2)

Step 1: Synthesis of 4-chloro-6-isopropoxy-N-phenylpyridin-
3-amine (16). 4-Chloro-5-iodo-2-isopropoxypyridine 14 (25 g,
84.03 mmol), aniline (7.65 mL, 84.03 mmol), Pd(OAc)2 (0.57 g,
2.52 mmol) and rac-BINAP (1.57 g, 2.52 mmol) as well as
Cs2CO3 (136.84 g, 420 mmol) were added to a three-neck flask
with a reflux condenser. The flask was evacuated and back-
filled with argon. Degassed toluene (300 mL) was added via a
cannula, and the flask was introduced into a preheated oil
bath at 110 °C. After 15 h at 110 °C the reaction mixture was
cooled to rt and filtered through a short pad of celite, and the
pad was washed with ethyl acetate. The combined organic
eluents were washed with water and brine, dried (Na2SO4), and
concentrated under reduced pressure. The crude product was
purified by flash chromatography (silica gel, 20 : 1 hexanes/
ethyl acetate) to afford only 16 (19.86 g, 90%) as a pale yellow
oil.

Step 2: Synthesis of 3-isopropoxy-9H-pyrido[3,4-b]indole
(2). A heavy-wall pressure tube was equipped with a magnetic
stir bar and fitted with a rubber septum loaded with
4-chloro-6-isopropoxy-N-phenylpyridin-3-amine 16 (19.86 g,
75.58 mmol), Pd(OAc)2 (1.70 g, 7.558 mmol), (t-Bu)3P·HBF4
(4.39 g, 15.12 mmol) and K2CO3 (20.89 g, 151.16 mmol). The
vessel was evacuated and backfilled with argon (this process
was repeated a total of 3 times) and degassed DMA (200 mL)
was added to this vial via a cannula. The rubber septum was
replaced with a screw-cap by quickly removing the rubber
septum under the flow of argon and the sealed tube was intro-
duced into a pre-heated oil bath at 120 °C. The reaction
mixture was maintained at this temperature for 16 h. At the
end of this period, the reaction mixture was allowed to cool to
rt. The dark brown mixture which resulted was then passed
through a short pad of celite. The celite pad was further

washed with ethyl acetate until no product (TLC; silica gel)
was detected in the eluent. The combined filtrate was washed
with water, brine, dried (Na2SO4) and concentrated under
reduced pressure. The solid product was purified by a wash
column (silica gel, 5 : 1 hexanes/ethyl acetate) to afford
3-ISOPBC (2) (15.74 g, 92%) as an off white solid.
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INTRODUCTION  

Alcohol dependence and anxiety frequently co-occur in psychiatric patients and can 

significantly complicate treatment outcomes (Kushner et al., 2000; Tiet and Mausbach, 2007). 

Regier et al. (1990) reported that in the Epidemiological Catchment Area (ECA) survey, those 

with “any anxiety disorder,” as compared to the rest of the sample, had a 50% higher probability 

of being diagnosed with an alcohol disorder. Also, men and women with a generalized anxiety 

disorder (GAD) were 4 and 3 times, respectively, more likely to be diagnosed with alcohol 

dependence. Together, these studies suggest that “all or most anxiety disorders have a highly 

significant relationship to alcohol use disorders (AUDs)” (Kushner et al., 2000).  

Additionally, substantial clinical studies show that anxiety disorders contribute to a 

poorer outcome in alcoholism treatment and an increase in the risk of relapse across a range of 

AUDs (LaBounty et al., 1992; Tomasson and Vaglum, 1996; Driessen et al., 2001). Thus, 

successfully treating comorbid anxiety disorders in even the “most standard alcoholic” would be 

expected to improve alcoholism treatment outcomes (Fals-Stewart and Schafer, 1992; Tollefson 

et al., 1992). 

A critical review of the psychiatry literature from 1996 to 2007 identified only five 

randomized control studies which evaluated a drug treatment for comorbid alcoholism and 

anxiety. Of these, four employed the atypical anti-anxiety agent buspirone (a non-BDZ 5–HT 1a 

agonist/D2 dopamine agonist), and one used the SSRI paroxetine (Tiet and Mausbach, 2007). 

While paroxetine significantly reduced both fear/anxiety, no significant effects were observed on 

alcohol drinking (Randall et. al, 2001). Tollefson et al. (1992) found that participants receiving 

buspirone showed significant reductions in anxiety scores; however, no significant medication 

effect was observed for physician-rated change in drinking. Kranzler et al. (1994) and Malcolm 

et al. (1992) reported negative findings with buspirone on anxiety and alcohol drinking in 

patients with nonspecific anxiety related disorders (i.e., GAD, phobia, etc). Given the lack of 
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effectiveness of the existing pharmacotherapies, researchers realized a clear need for new 

therapies to treat the comorbid condition (Swift, 1999; Tiet and Mausbach, 2007). 

Research suggests that alterations occur in the GABAA receptor subunits once the 

animal transitions from the nondependent to dependent phases (Koob, 2004). Chronic alcohol 

consumption (i.e., diet) produces decreases in α1 subunit protein expression levels (Charlton et 

al., 1997; Devaud et al., 1997; Grobin et al., 2000) and increases in the α4 subunit in both the 

cerebral cortex and hippocampus of the rat (Devaud et al., 1997; Grobin et al., 2000; Matthews 

et al., 1998). Morrow and colleagues suggest that, with chronic ethanol consumption, the 

GABAA receptor α1 subunit is substituted by the α4 subunit (Devaud et al., 1995, 1997) and 

may contribute to both excessive alcohol drinking behavior and the development of ethanol 

dependence. 

Previous research suggests that α2-containing GABAA receptor subunits regulate the 

anxiolytic actions of BDZs (Low et al., 2000). However, new evidence using α2-knockin mice 

suggests a role for the α3-containing GABAA receptors (Dias et al., 2005). Finally, the discovery 

of a new anxioselective ligand (ocinaplon) with significant efficacy at the α1 subunit suggests an 

important role for the α1 receptors (Lippa et al., 2005). Thus, the α1 – α3-containing GABAA 

receptor subunits all seem to play a critical role in mediating the anxiolytic actions of BDZs. 

Much evidence suggests that, in rodents, the BLA is critical for the acquisition of fear/anxiety 

responses (Killcross et al., 1997), as well as innate expression of anxiety (Sajdyk and Shekhar, 

1997). This locus contains high levels of both the α1 and α2 subunits (Fritschy and Mohler, 

1995; Kaufmann et al., 2003).  

In three highly-cited papers (Harvey et al., 2002; June et al., 2003, Foster et al., 2004), 

our lab has shown that systemic and direct infusion of mixed BDZ agonist-antagonist ligands 

with binding preference/selectivity for the α1 receptor (e.g., βCCt or 3-PBC) into the VP or CeA 

produces remarkably selective reduction in alcohol responding in nondependent P and HAD 

rats. Because the VP primarily contains GABA receptors of the α1 subtype (Churchill et al., 
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1991; Kaufmann et al., 2003), and the CeA contains α2 and α3 subtypes (Fritschy and Mohler, 

1995; Kaufmann et al., 2003), we hypothesized that the reduction in alcohol responding 

following microinfusion into the VP and CeA was due primarily to modulation of the α1 and α2 – 

α 3 receptor subtypes, respectively (see June and Eiler, 2007). However, the HEK cell data 

presented in this manuscript allowed us to understand and exploit the molecular mechanism of 

action of our compounds. Given that α2 has been associated with anxiety, we wanted to further 

evaluate our compounds for regulation via the GABA α2 receptor. 
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MATERIALS AND METHODS 

 

Subjects: P rats (males; N = X) were used to model binge alcohol drinking in humans (Bell et 

al., 2006; Nami et al., 2005). Animals were approximately 3 – 4 months of age at the beginning 

of the experiment. 

 

Oral drugs and administration procedures: 3-PBC and βCCt (Dr. James Cook, University of 

Wisconsin-Milwaukee, Milwaukee, WI) were mixed immediately before the experimental test 

sessions in a volume of 1 ml/kg in deionized (DI) water. Drugs were given by oral gavage 25 

min prior to all experimental sessions.  

 

Binge Drinking Apparatus: Animals were tested in standard operant chambers (Coulbourn 

Instruments, Inc., Lehigh Valley, PA) enclosed in an isolation chamber as previously described 

(June et al., 2007).  The dipper cup size was 0.1 mL, and contained the 10% (v/v) alcohol or 

0.1% (w/v) sucrose reinforcers.  The Coulbourn Graphic State “3” operant software was used 

(June et al., 2007). 

 

Drinking in the Dark Multiple Scheduled Access (DIDMSA) Paradigm: The DIDMSA 

protocol (Bell et al., 2006) was used to initiate binge drinking with P rats.  Identical and complete 

training procedures have been employed previously (Warnock et al., 2012).  To initiate the 

DIDMSA protocol, the subjects were given a 30 min operant session using an FR-4 schedule 

after training.  After the initial 30 min session had elapsed, rats were placed in the home cage 

with food and water ad libitum for 1 h.  Rats then received two additional 30 min alcohol access 

periods, spaced 1 h apart.  In total, animals received three daily 30 min access periods, each 

spaced 1 h apart.  Other cohorts of rats were trained in an identical manner for 0.1% (w/v) 

sucrose.  During the non-session binge period, rats received food and water ad libitum.  Based 
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on preliminary data illustrating that sustainable and highly reliable measures of BACs produced 

negative affective measures of withdrawal following abstinence (Warnock et al., 2012), the P 

rats were engaged in binge drinking for 21 consecutive days. Using this protocol, BAC 

measurements exceeded > 80 mg %/dL at the 90 min operant session.    

 

Blood Alcohol Concentration (BAC) Measurement: To ensure that the P rats were 

consuming pharmacologically relevant amounts of ethanol to effectively model human binge 

drinking (Naimi et al., 2003), BACs were taken on day 21 from a subset of rats randomized into 

the drug treatment groups.  BACs were determined in duplicates at the 30 and 90 min operant 

sessions as previously reported (June et al., 2007).  The BAC measurements at 90 min were 

consistent with the NIAAA definition of binge alcohol consumption in humans (NIAAA, 2004; Bell 

et al., 2006). 

 

Prolonged Repeated Alcohol Deprivation (PRAD) Paradigm: Rats were trained on the 

DIDMSA paradigm to binge drink for a full 6 weeks using the 90 min exposure regimen, with 

each 30 min session separated by 1 h, on a modification of the Rodd et al., (2003) paradigm. 

Following a 6 week period, rats were initially deprived of alcohol for 2 weeks. All animals were 

then re-exposed to the experimental chambers and allowed to respond on an FR4 schedule on 

both levers for alcohol [10%, v/v] for 2 weeks. Following this re-exposure period, all 4 of the 

deprived groups were once again deprived of alcohol for two more weeks before being given 

access to the operant chamber for an additional two weeks. Thus, all rats had 2 deprivation 

periods with each followed by a 2 week access (see Table 1).  

 

Elevated Plus Maze (EPM) Paradigm: In order to measure anxiety we employed the EPM. The 

fully automated plus-maze (Acuscan Electronics, Columbus, OH) utilizes an apparatus with two 
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open arms without sides, at right angles to two closed arms with sides, and raised about four 

feet from the floor. When allowed to shuttle freely among the arms, rats spend less time on the 

open arms than on the closed arms, presumably reflecting a fear of height and open spaces. 

Forced confinement to the open arms is associated with increased plasma corticosterone 

concentrations and treatment with anxiolytic drugs increases the time rats spend on the open 

arms compared with un-drugged controls (Pellow et al., 1985; File, 1995).  

 

Functional evaluation of ligands: The HEK cell data discussed below used standard methods 

from Dr. Ludden’s laboratory. These procedures will be described prior to discussion of binding 

and functionality. 

 

Statistical Analyses: Data were analyzed by between-group ANOVAs. Significant ANOVAs 

were followed by the Newman-Keuls post-hoc tests. All analyses were performed using the 

Sigma Plot 11.2 software program (Systat Software Inc., San Jose, CA). 

 

EXPERIMENTAL DESIGN   

Experiment 1:  Evaluation of 3-PBC and βCCt on binge drinking 

      After 21 days of binge drinking alcohol/sucrose rats (N = 40) were randomly divided into 3-

PBC (25, 40, or 75 mg/kg) or vehicle (DI water) groups (N = 5/group), and on Day 22, received 

their respective treatments. Similarly constructed cohorts received βCCt (25, 40, or 75 mg/kg) or 

vehicle (N = 5 – 8/group). BACs were taken on day 21 from select 3-PBC or βCCt-treated rats. 

 

Experiment 2: Evaluation of βCCt on the PRAD Paradigm 

Following the 6 week training period 5 cohorts of P rats were randomly divided into 

treatment groups (N = 5/group) and withdrawn from alcohol as described above. Animals were 
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orally administered βCCt (25, 40 or 75 mg/kg) or vehicle 25 min before their 90 min binge 

session for 5 days post-deprivation, and responding was measured after the first 30 min and full 

90 min sessions (see Table 1). 

 

Experiment 3: Effect of βCCt on EPM 

After the 21 days of binge drinking, 12 h after their last 30 min binge alcohol session 

(withdrawal), P (N = 5-6/group) and HAD (N = 6-8/group) rats were given βCCt (25, 40 or 75 

mg/kg) or DI water 20 min prior to the 5 min plus maze session. Time spent on the open arms 

was measured and compared to respective pre-withdrawn groups (N = 6-7/group). 

 

Experiment 4:  Evaluation of βCCt on ICSS. 

Phase I. Alcohol withdrawal time course. Following stabilization on an FR6 ICSS schedule, P 

rats were trained to binge drink alcohol (N = 6) or sucrose (N = 6). Following 21 days of binge 

drinking, abstinence was induced and ICSS parameters were measured over a 6 to 84 h period. 

During the abstinence period, both groups were given DI water.  

 

Phase II. Effects of βCCt on alcohol withdrawal. To evaluate the effects of βCCt, five 

additional cohorts of P rats were stabilized on the FR6 ICSS schedule. Following 21 days of 

binge drinking, they were randomly divided into a sucrose control [N = 9], non-alcohol withdrawn 

[N = 9], alcohol withdrawal [N = 9], 20 mg/kg + withdrawal [N = 9], and 40 mg/kg + withdrawal [N 

= 9] groups. ICSS parameters were measured at 12 and 24 h withdrawal. Immediately, prior to 

the 12 and 24 h abstinence periods, oral βCCt [20, and 40 mg/kg] or vehicle was administered. 

The six cohorts were then compared with the sucrose control and non-alcohol withdrawn 

groups. 
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Experiment 5 

Phase I. Expression of recombinant GABAA receptors. For electrophysiological recordings 

HEK 293 cells were passaged and re-plated on 12-mm glass cover slips located in 9.6 cm 

plastic dishes filled with 10 mL of Minimum Essential Medium (MEM, Gibco) supplemented with 

158 mg/L sodium bicarbonate, 2 mM glutamine (Gibco), 100 U/mL penicillin-streptomycin 

(Gibco), and 10% fetal calf serum (Gibco). Cultures were maintained at 37° C in a humidified 

95% O2/5% CO2 atmosphere for 2 – 3 days. Transfection of HEK 293 cells was carried out 

using the phosphate precipitation method as described elsewhere in detail (1). Rat wild-type 

subunit cDNAs of the GABAA receptor in the eukaryotic expression vector pRK5 were co-

transfected in varying combination. For optimal receptor expression (1) the following final 

concentrations (µg vector DNA per 9.6 cm tissue culture plate) were used: α1, 2; α 2, 4.8; α 3, 

1.2; α4, 10; α 5, 0.8; α6, 2; β2, 10; β 3, 0.4; γ2S, 0.5, and δ, 2. The γ 2S variant is abbreviated 

γ2 in the remainder of the text. To facilitate the identification of transfected cells, 1 μg/ plate of 

pEGFPN1 vector (Clontech, Saint-Germain-en-Laye, France) was added. 

 

Phase II. Electrophysiology. Two days after transfection, single coverslips containing HEK 

293 cells were placed in a recording chamber mounted on the movable stage of a fluorescence 

microscope (Olympus IX70) and perfused at room temperature with a solution containing (in 

mM): 130 NaCl, 5.4 KCl, 2 CaCl2, 2 MgSO4, and 10 HEPES (free acid), pH adjusted to 7.35 

with about 35 mM NaOH. Transfected cells were identified by their EGFP fluorescence, and 

ligand-mediated membrane currents of these cells were studied in the whole-cell configuration 

of the patch-clamp technique (2) with an electrophysiological set-up and procedure as described 

in detail elsewhere (3). To assess the concentration-response effects of βCCt and 3-PBC, 

increasing concentrations (0.01–100 μmol/L) of one of these compounds were co-applied to the 

cells with the approximate receptor subtype specific GABA EC20. with a fast application system 
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(SF-77B, Perfusion Fast Step; Warner Instruments, LLC, Hamden, CT, USA) which enables 

rapid solution changes with maximal current rise times of < 1 ms for a liquid junction current on 

pipette tips, although the exchange around cells is probably slower. Maximal GABA-induced 

currents were determined by 1 mmol/L GABA. βCCt and 3-PBC were additionally tested at all 

concentrations in the presence of 10 μM Ro15-1788 and GABA at its respective EC20. 

Ethanol mediated effects on the receptor current response were tested with the 

approximate receptor subtype specific GABA EC10, and GABA EC10 with 30 mM or 100 mM 

ethanol. Furthermore, both ethanol concentrations were tested together with GABA EC10 and 1 

nM or 30 nM of βCCt and 3-PBC, respectively. All compounds were additionally tested at the 

concentrations used here in the presence of GABA at its respective EC10 (data not shown). 

The amplitudes of peak currents were measured from recorded traces. The GABA 

concentration–response curve was analyzed with a sigmoidal non-linear regression fit, using the 

formula I = (Imaxx[L]nH)/(EC50 nH+[L]nH), where Imax is the maximal induced current, L is the 

concentration of the agonist, and n the Hill coefficient. Current activation was depicted with the 

current rise-time by measuring the time needed from 10-90% of the peak current at the 

individual GABA concentration. Kinetics of current desensitization and current deactivation were 

fitted to standard exponential functions with one to three terms using the Chebyshev searching 

routines of ClampFit 8.1. 
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RESULTS 

Experiment 1:  3-PBC and βCCt reduce binge drinking 

Figures 1A and C, respectively, illustrate rates of responding maintained by impulsive 

binge alcohol (e.g., DIDMSA) drinking following oral administration of βCCt or 3-PBC (25, 40 

and 75 mg/kg). Using the binge model, P rats produced consistent BACs of 144 ± 22 mg%/dL. 

The effects of βCCt and 3-PBC on binge sucrose responding, following identical drug 

treatments, are illustrated in Figures 1B and D, respectively. All doses of βCCt and 3-PBC 

markedly suppressed alcohol responding compared to vehicle (Figs. 1A, 1C) [βCCt, F(2,14) = 

11.546, p = 0.001], [3-PBC, F(2,8) = 53.053, p < 0.001]. Neither βCCt nor 3-PBC (Figs. 1B, 1D) 

altered sucrose responding [βCCt, F(2,8) =0.0615, p > 0.05] [3-PBC, F(2,16) = 0.0187, p > 

0.05].  

 

Experiment 2: Evaluation of βCCt on the PRAD Paradigm 

In addition to the DIDMSA binge model, we employed the PRAD model to examine the 

effects of βCCt on the relapse/craving domain of alcohol dependence. Animals were initially 

trained on an FR4 schedule for 10% (v/v) alcohol for 6 weeks, using a 90 min operant session 

(Rodd et al., 2003). They were then subjected to either a single two week deprivation period - 2 

week alcohol access period (Figure 2, 2 week ADE group), two cycles of this treatment (Figure 

2, PRAD group), or PRAD exposure with βCCt treatment (Figure 2; 25, 50, or 75 mg βCCt 

group). βCCt was given during the initial 5 days of alcohol access for the last alcohol exposure 

phase. Figures 2A and 2B shows significant effects for Treatment [F(4,5) = 21.065, p < 0.001; 

F(4,5) = 11.641, p < 0.001], Day [F(5,20) = 5.333, p < 0.001; F(5,20) = 10.032, p < 0.001], and 

the treatment x day interaction [F(20,149) = 2.377, p < 0.005 ; F(20,149) = 2.260, p < 0.005] for 

the 30 min and 90 min sessions, respectively, for P rats on a 2 week PRAD paradigm. During 

the initial 6 week baseline period, all animals responded at relatively similar levels at the 30 and 
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90 min drinking sessions. More importantly, the PRAD group showed a marked elevation of 

responding above basal levels for all 5 post-deprivation days [p < 0.05 for both 30 and 90 min]; 

BACs were well above 110 mg%/dL and 138 mg%/dL at the 30 and 90 min sessions, 

respectively. These PRAD effects were markedly reduced by chronic treatment with βCCt [p < 

0.001 for both 30 and 90 min]. Taken together, it is possible that the βCCt agent may be an 

effective treatment for both binge- and relapse-induced drinking. 

 

Experiment 3: Effect of βCCt on EPM 

Previous research has shown that withdrawal from drugs of abuse increased anxiety in 

the elevated plus maze (Koob, 2004). Thus, we evaluated this hypothesis after both P and HAD 

rats had binge-consumed high levels of alcohol for 21 days. On day 22, 12 h after the rats’ last 

30 min binge alcohol session, we performed the standard 5 min test in control- and βCCt- (25 – 

75 mg/kg) treated HAD and P rats. Figures 3A – B show that, compared with the control (non-

alcohol treated) animals, alcohol abstinence produced a significant reduction in time spent in the 

open arms in HAD and P rats. However, rats given the βCCt treatment exhibited a markedly 

enhanced duration of time on the open arms of the plus maze. [HAD rats, F(3,22) = 2.859, p < 

0.05; P rats, F(4,22) = 7.783, p < 0.001 ]. These data are in agreement with other studies which 

show that treatments that augment GABAergic activity reduced the anxiogenic actions on the 

plus maze following alcohol abstinence (for review see Rassnick et al., 1993; Koob, 2004). 

 

Experiment 4:  Evaluation of βCCt on ICSS. 

Phase I. Alcohol withdrawal time course. 
 

Figure 4A illustrates time-dependent threshold elevations in P rats after withdrawal from 

alcohol following 21 consecutive days of intake using the home cage DIDMSA protocol (Bell et 

al., 2006). The BACs on Day 21 were 148 ± 32 mg%/dL in P rats. Significant main effects of 

Time [F(8,40) = 5.046, p < 0.001], Treatment [F(1,5) = 21.910, p = 0.005], and the interaction of 
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Time x Treament [F(8,40) = 3.852, p = 0.002] were seen for withdrawn vs. control groups. At the 

6 h abstinence period, threshold elevations began to emerge, and by 12 h post-alcohol 

administration, the elevations were markedly above the level of the control animals in the 

Baseline 1 and 2 conditions [p < 0.05]. By 84 h post-alcohol administration, the threshold 

elevation effects had dissipated. Thus, as in outbred rats using the alcohol vapor chamber 

(Schulteis et al., 1994), alcohol-induced abstinence effects can also be observed in alcoholic 

rats following oral binge alcohol intake using the ICSS model. 

 
Phase II. Effects of βCCt on alcohol withdrawal. 
 

Though chronic alcohol exposure produced no ICSS threshold lowering effects on either 

the minimum frequency or EF50 parameters [Figures 4B and C], [p > 0.05], alcohol-abstinent P 

rats displayed a markedly enhanced elevation in ICSS threshold [p < 0.05 for minimum 

frequency at 12 hr, EF50 at 24 hr] [ Figures 4A and B]. When the abstinent rats were pre-treated 

with the 20 and 40 mg/kg oral doses of βCCt, a marked reduction in both the minimum [p < 0.05 

for 40 mg/kg at 12 and 24 h] [Figure 4B] and EF50 [p< 0.05 for both doses on both days] 

[Figure 4C] threshold measures was observed. Thus, βCCt may “normalize” GABA, or an 

interaction at monoaminergic neurotransmission, in the abstinent P rats, restoring the alcohol-

deficient GABA/monoamine systems to appropriately regulate reward-related behaviors. 

 

Experiment 5 

Phase I. Expression of recombinant GABAA receptors 

As illustrated by Harvey et al. (2002) and Yin et al. (2005), an examination of the 

potencies of a series of compounds across GABAA receptor subtypes by radioligand binding 

(including both “diazepam sensitive” [DS] types [α1-,2-, 3-, and 5-containing] as well as a 

“diazepam insensitive” [DI] subtype [α4 and α6-containing]) reveals selectivity at GABAA α1 

receptors for βCCt and 3-PBC, relative to the prototypic α1-preferring compounds zolpidem and 

479



www.manaraa.com

CL 218,872. For example, ΒCCt and 3-PBC exhibit ~15 – 26-fold higher affinity for α1 relative to 

other subtypes examined. Both zolpidem and CL 218,872 exhibit no more than a 10-fold 

selectivity at α1 relative to the other GABAA receptor subtypes examined. Note that there are no 

remarkable differences in the potency of the prototypic benzodiazepine diazepam among 

GABAA α1-, 2-, 3-, and 5-containing receptors. 

The electrophysiological studies using recombinant receptors provide insights into the 

functional pharmacology of drugs at specific GABAA receptor subtypes. Figure 5 illustrates the 

efficacy of βCCt and 3-PBC across the GABAA α1-2 receptor subtypes. It is clear that the novel 

compounds exhibit efficacies lower than diazepam across the 0.01 – 100 μM dose range. A 

similar profile of effects occurred at the α3 and 5 receptor subtypes (data not shown). The 

predicted α2-mediated anxiolytic profile of diazepam would likely be accommodated by a 

greater number of unwanted side effects due to the greater augmentation of GABA at the α1- 

and α5-mediated sedative subunits (Barnard et al., 1998). This contrasts with the anxiolytic 

effects of the novel ligands. Also, unlike diazepam, at the α1 and α2 subunits, the GABA-

mediated effects do not appear to be mediated via the normal BDZ site, as Ro15-1788 

(flumazenil) partially/completely fails to block the GABA potentiation of βCCt and 3-PBC (Figure 

5). At the α6 subtype, little if any efficacy occurred with any of the four ligands (data not shown).  

Harvey et al. (2002) and Yin et al. (2005) show that the affinity of βCCt is about 21 – 26-

fold higher at GABAA α1 relative to GABAA α2 and α3, respectively. In electrophysiological 

studies, the EC50 values for βCCt (at an EC20 of GABA) are 0.21 μM, 9.43 μM, and 3.14 μM at 

GABAA α1, 2, and 3, respectively (Rabe and Lüddens, unpublished). By comparison, the EC50 

values of diazepam across these three isoforms are 0.07 μM, 0.18 μM, and .08 μM respectively. 

This illustrates that diazepam is nonselective across these receptor isoforms, while βCCt is 

relatively selective at the GABAA α1 subtype. Hence, these findings illustrate that the affinity 

ratio determined by radioligand binding techniques as summarized in Harvey et al. (2002) and 

Yin et al. (2005) are not generally indicative of “the functional consequences of these ligands at 
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GABAA receptors” because they do not measure the compounds’ efficacies, but only their 

relative potencies. Thus, electrophysiological studies are used: to provide some insight into the 

pharmacological effects of compounds at specific receptor subtypes. The preliminary efficacy 

data in Figure 5 illustrates this point. Radioligand binding studies would not have predicted the 

Ro 15-1788-insensitive augmentation of GABA currents by βCCt and 3-PBC. Thus, radioligand 

binding studies clearly do not reflect “functional consequences.” Inspection of the binding and 

functional data for the DI α4-containing subtype shows that βCCt and 3-PBC augments GABA 

at the α4β3γ2 subtype at the 1 and 10 μM concentrations (Figure 5). Moreover, at the α4β2δ 

subtype, dramatic modulation on alcohol mediated GABA currents was observed by βCCt 

(Figure 5). However, the potencies of these compounds, as determined by radioligand binding 

techniques and summarized in Harvey et al. (2002) and Yin et al. (2005), are silent (i.e., very 

low affinity). Clearly, the binding constants at these receptors do not predict their functional 

consequences. In summary, binding constants for our novel ligands are generally not reflective 

of the potential functional consequences resulting from a ligand-receptor interaction, although 

there are a few exceptions. 

 

βCCt and 3-PBC in vitro. 

Unexpectedly, 3-PBC potentiated GABA-induced currents of GABAA receptors 

consisting of α- and β- subunits only. On α1β3 and on α6β3 50 μM of the drug enhanced GABA-

induced currents up to the GABA EC90 (Fig. 6). Since α4β2/3 and α6β2/3 receptors seem to be 

extra synaptic (McKeman and Whiting, 1996), these findings might play a physiological role, i.e. 

by enhancing the GABA sensitivity of these extra synaptic receptors. In both cases 1 μM of ZK 

93426 completely antagonized the 3-PBC effect. On the other hand, βCCT had no significant 

effects of the GABA induced currents. 

 

βCCt and 3-PBC Modulate Alcohol Action in vitro 
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Given the consistent reports in our laboratory that both βCCt and 3-PBC are selective 

antagonists of alcohol motivated behaviors and are also anxiolytics (June and Eiler, 2007; also 

see below), we evaluated the capacity of these ligands to block alcohol’s action at the α2 

subtype. Figure 7 shows that low doses of both 3-PBC and βCCt (1 – 30 nM) dose-dependently 

reduced the low and high dose (30 and 100 mM) alcohol enhancement at the α2 receptors. 

Taken together, we hypothesize that WYS8, βCCt and 3-PBC may reduce excessive alcohol 

drinking (see below) via an anxiolytic action, particularly because of the role of the α2 subunit in 

anxiety (Low et al., 2000). 
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DISCUSSION    

In an attempt to find an agent active in treating anxiety and alcoholism, we employed P 

and HAD rats (McBride and Li, 1998; Murphy et al., 2002) to model the effectiveness of the α1-

preferring BDZs, 3-PBC and βCCt, on binge alcohol self-administration, craving/relapse, anxiety 

(using the EPM) and negative affective states (as seen with anhedonia in the ICSS). 

In vitro, 3-PBC and βCCt act primarily at the α1, α2 and α3 receptors, diazepam 

sensitive sites, (Fig. 5) by potentiating GABA across different concentrations that are equivalent 

to the doses of 3-PBC and βCCt given orally to our rats during the behavioral studies. This is 

consistent with our previous work (Liu et al., 2011) that used siRNA viral vectors to show that 

GABA α1 and α2 receptor subunits play a significant role in regulating binge alcohol drinking. 

Additionally, the compounds potentiate GABA at the α4 receptor, a diazepam insensitive site 

(Fig. 5). We initially hypothesized that our compounds work only at the diazepam sensitive 

sites, α1, α2 and α3, but we show that our compounds may also be acting at the diazepam 

insensitive site, α4, which has been shown to regulate social drinking (Janek, PNAS 2011). The 

α2 receptor is particularly involved in antagonizing alcohol binge drinking (Liu et al., 2011; June 

and Eiler, 2007). Both low and high concentrations of alcohol potentiate GABA at the α2 subunit 

(Fig. 7). This is important because it contrasts the Olsen et al., (date) manuscript that shows 

that only low doses of alcohol potentiate GABAergic activity at these subunits. Both 3-PBC and 

βCCt alone do not potentiate the GABA α2 subunit at small doses. However, when given in 

combination with alcohol, both compounds dose-dependently reduce the GABA potentiation by 

alcohol (Fig. 7). These data are consistent with the role of α2 in regulating binge drinking 

showing by Liu et al. (2011) in PNAS. Given that the α2 subunit has been shown to play a role 

in anxiety (Low et al., 2000), this data strongly suggests that our ligands may be reducing binge 

drinking as well as negative affect.  

Alcohol dependence and anxiety frequently co-occur in psychiatric patients and can 

significantly complicate treatment outcomes (Kushner et al., 2000; Tiet and Mausbach, 2007).  
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Using an established binge model (Bell et al., 2006; Liu et al., 2011), we demonstrated the 

GABA α1-preferring ligands, 3-PBC and βCCt, effectively and dose dependently reduce binge 

alcohol, but not binge sucrose drinking. The sucrose concentration was selected so response 

rates would be relatively similar to both alcohol and sucrose, eliminating the potential confound 

of a “difference in reinforcer efficacy” (June et al., 2003; June and Gilpin, 2010). The failure of 

both βCCt and 3-PBC to alter sucrose responding strongly suggests that these agents would 

not disrupt normal ingestive behaviors (June and Gilpin, 2003). These results agree with 

another study done by June and Eiler (2007) where the efficacies of both βCCt and 3-PBC in 

selectively reducing alcohol responding and producing anxiolytic effects were demonstrated in P 

and HAD rats following oral administration (June and Eiler, 2007). Taken together, these data 

indicate that 3-PBC and βCCt selectively suppress alcohol-motivated behaviors in alcohol-

dependent rats. Additionally, our findings are supported by the work of Boem and colleagues 

(year) with other GABA-selective compounds. However, unlike the compounds used in the 

Boem studies, our GABA compounds can be used in a clinical population.  

Previous research has shown that withdrawal from drugs of abuse increase anxiety in 

the elevated plus maze (Koob, 2004); decreased time spent on the open arms of the EPM 

approximates increased anxiety (citation needed). In our study, compared with the control (non-

alcohol treated) animals, alcohol abstinence produced a significant reduction in time spent in the 

open arms in HAD and P rats. However, rats given the βCCt treatments exhibited markedly 

increased time spent on the open arms of the plus maze (Fig. 3). Our also data strongly support 

the capacity of our BDZ compounds to attenuate the anxiolytic effects of alcohol withdrawal. 

These data are in agreement with other abstinence studies which show treatments that 

augment GABA reduced the anxiolytic actions of withdrawal on plus maze activity (Rassnick et 

al., 1993; Koob, 2004).  

Elevations in ICSS threshold parallel anhedonia (Paterson and Markou, 2007), a 

condition characterized by a diminished pleasure or interest (American Psychiatric Association 
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(APA), 2000). Anhedonia is a core symptom of depression and drug withdrawal (Markou et al., 

1998; Paterson and Markou, 2007), and thus, elevations in ICSS threshold have been used to 

model negative affective states (Der-Avakian and Markou, 2012). As observed in both 

depressed and drug-withdrawn states, ICSS measures of total responding also provide an 

assessment of psychomotor performance (Eiler et al., 2005; Paterson and Markou, 2007). In our 

study, we showed that there is a significant elevation of minimum frequency following 12 to 72 h 

of alcohol withdrawal as compared to a sucrose control group (Fig. 4A). Furthermore, we 

showed that βCCt is effective in attenuating the increase in minimum frequency and EF50 

parameters caused by 12 or 24 h of withdrawal (Fig. 4B; Fig. 4C). Anhedonia has been 

suggested as a key component of the abstinence symptomatology (Gawin and Kleber, 1986), 

and as an important factor in relapse (Koob and Le Moal, 2001). In the ICSS model, βCCt was 

effective in reducing alcohol-induced negative affective states which have been suggested to 

emulate depression-like behaviors in humans (Heinz et al., 1994; Paterson and Markou, 2007).  

While anxiety is addressed with the effects of βCCt on withdrawal in the EPM, the fact that βCCt 

also significantly attenuates withdrawal symptomatology in the ICSS paradigm suggests our 

compounds may also be effective in regulating the mechanisms of depression. 

A critical review of the psychiatry literature from 1996 to 2007 identified only five 

randomized control studies which evaluated a drug treatment for comorbid alcoholism and 

anxiety. Of these, four employed the atypical anti-anxiety agent buspirone (a non-BDZ 5–HT 1a 

agonist/D2 dopamine agonist), and one used the SSRI paroxetine (Tiet and Mausbach, 2007). 

Randall et al. (2001) examined the efficacy of paroxetine for the treatment of social anxiety and 

alcohol abuse or dependence (Randall et al., 2001). All five studies reported significant effects 

on anxiety, but no effects on alcohol drinking (Tiet and Mausbach, 2007). Given the 

ineffectiveness of the existing pharmacotherapies, researchers have come to the realization that 

there is a clear need for new drug therapies to treat the comorbid condition (Swift, 1999; Tiet 

and Mausbach, 2007). Based on our binge alcohol drinking and negative affect data, our α1-
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preferring ligands represent significant, novel pharmacotherapies for treating the comorbid 

condition of alcoholism and anxiety. 

Rodd et al. (2003) contend that the drinking patterns of human alcoholics are segmented 

by multiple periods of abstinence and intake, also known as relapse (Hilbrom, 1990; McMillen, 

1997). Relapse drinking, similar to binge drinking, is an excessive model of drinking that 

produce hazardous effects in adolescents (citation needed) as well as the adult population 

(citation needed). Substantial epidemiological work suggests these excessive models are the 

most devastating alcohol patterns to society (citation needed), in contrast to traditional DSM-IV 

definition alcohol dependence (APA, 1994). In this study, we used the PRAD paradigm (Rodd et 

al., 2003) to illustrate craving/relapse in an animal model of alcohol abuse. As with the DIDMSA 

model, the PRAD model produces dependence in P and HAD rats, though it has also been 

suggested to be a relapse model. Because we see a significant attenuation of responding for 

alcohol during the relapse period by βCCt compared with relapse alone (Fig. 2), this suggests 

that our BDZs represent promising pharmacotherapies for alcohol craving and relapse. Unlike 

binge drinking, very few studies have looked at GABA agents and relapse drinking. Our data 

suggest that our compounds can be used not only to antagonize binge drinking, but also relapse 

drinking. Because our compounds act at primarily the GABA α1, α2 and α3 subunits, our data 

also suggest that these GABA subunits may be involved in the regulation of alcohol 

craving/relapse in addition to the regulation of binge alcohol drinking.  

In summary, both 3-PBC and βCCt were effective in attenuating binge alcohol drinking, 

and βCCt was effective in regulating craving/relapse. In addition, βCCt was effective in 

attenuating two measures of negative affect induced by abstinence: anxiety and anhedonia 

(Paterson and Markou, 2007). The responding profiles in the ICSS assay suggest that the 

effects of βCCt on negative affective states are not secondary to altering general activity. Thus, 

given the ability of the EPM and ICSS to model aspects of the anxiolytic and depressive 

symptomatology (Paterson and Markou, 2007), we propose that our compounds may be 
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effective in attenuating anxiety/depression secondary to alcohol-induced abstinence. Given the 

effectiveness of our compounds for treating the comorbid condition, the failure/reduced capacity 

of our compounds to show additive sedative effects with alcohol (June et al., 2003), and the 

need for pharmacotherapies that affect both alcohol consumption and anxiety (Swift, 1999; Tiet 

and Mausbach, 2007), we propose βCCt and 3-PBC would be effective in treating the co-

occurrence of alcoholism and anxiety at doses that are safe and well tolerated in humans. 
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FIGURE LEGENDS 

 Figure 1. Effects of βCCt and 3-PBC (25, 40 and 75 mg/kg) on binge alcohol (A, C) and 

sucrose (B, D) responding in P rats (N = 5-8/dose), * p ≤ 0.05. 

 

Figure 2. Effects of orally-administered βCCt on a 2 week PRAD paradigm over (A) 30 min and 

(B) 90 min in P rats. (N = 5 – 9/group; Total N = 36). BL = baseline; ## p ≤ 0.05 compared with 

25, 40 and 75 mg βCCt PRAD groups, ‡ p ≤ 0.05 compared with 2 week ADE group. 

 

Figure 3. The effects of withdrawal from binge alcohol consumption in (A) HAD and (B) P rats 

in the elevated plus maze test for normal (non-alcohol treated), binge alcohol-withdrawn, and 

βCCt-treated rats (N = 6 – 8/treatment group). The plus maze test was 5 min and the treatments 

were given orally immediately prior to evaluation. **, p ≤ 0.05 compared with withdrawn 

condition, ††, p ≤ 0.05 compared with vehicle. 

 

Figure 4. (A) Time-dependent elevation of ICSS during alcohol withdrawal in P rats (N = 

6/group). Rats were withdrawn from alcohol for 6 – 84 h after 21 days of consecutive binge 

alcohol intake. Min Freq (B) and EF50 (C) of P rats (N = 9/group) in ICSS pre-withdrawal, during 

withdrawal, and with βCCt treatment. *, p ≤ 0.05 compared with the vehicle-treated “withdrawn” 

rats. 

 

Figure 5. Whole-cell recordings of HEK 293 cells expressing recombinant rat α1β3γ2, α2β3γ2, 

α3β3γ2, α4β3γ2, α5β3γ2 and α6β3γ2 (GABAA) receptors for diazepam (DZ), βCCt, and 3-PBC 

at doses of 0.1 – 100 µM interacting with Ro15-1788 (10 µM) at the EC20 level. Asterisk (*), 

plus (+), and number (#) symbols denote p < 0.05 in a two-sided t-test. * indicates significance 

of DZ, βCCt or 3-PBC  compared to GABA control; +, of DZ, βCCt or 3-PBC plus Ro15-1788 
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compared to treatments alone; and #, of DZ, βCCt or 3-PBC plus Ro15-1788 compared to 

GABA control. Error bars indicate the standard error of the mean (± SEM) for at least four cells. 

 

Figure 6. Effects of 3-PBC (A) and βCCt (B) on GABA-induced currents to GABAA 

receptors consisting of α- and β- subunits only. Currents were normalized to the GABA 

concentration specific for the receptor subtype under in vitro conditions. On α1β3, 50 μM of 3-

PBC (A) enhances the GABA-induced currents up to the GABA EC90. βCCt (B) had no 

significant effects of the GABA induced currents. Error bars indicate the standard error of the 

mean (± SEM) for at least four cells. p-values were calculated with the students t-test (paired). 

 

Figure 7. Whole-cell recordings of HEK 293 cells expressing recombinant rat α2β3γ2 

GABAA receptors. Currents were normalized to the GABA concentration specific for the 

receptor subtype EC10 under in vitro conditions. (A) Two concentrations of ethanol (30 mM and 

100 mM) in the absence or presence of 1 nM and 30 nM βCCt, respectively, were co-applied 

with 1.5 μM GABA. (B) An identical set of experiments was performed with 3-PBC. Asterisk (*), 

plus (+), and number (#) symbols denote p < 0.05 in a two-sided t-test. * indicates significance 

compared to GABA control; +, of GABA plus ethanol compared to GABA plus ethanol plus β-

carboline; and #, of GABA plus ethanol plus 1 nM β-carboline compared to GABA plus ethanol 

plus 30 nM β-carboline. Error bars indicate the standard error of the mean (± SEM) for four 

cells. 
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